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Abstract

We are investigating different concepts of modular deformations of germs of isolated
singularities (infinitesimal, formal). An obstruction calculus based on the graded Lie
algebra structure of the tangent cohomology for the enlargement of a modular defor-
mation is introduced. The maximal formal modular stratum of a versal deformation of
a space curve singularity coincide with the flattening stratum of the relative Tjurina
module of the family extending the similar result for ICIS. Examples are computed for
modular deformations of curve singularities which have a splitting of its singular locus
inside its τ -constant stratum.

Introduction

The notion of a modular deformation has been introduced for complete complex varieties by
Palamodov, cf. [P1], later on by Laudal in a more general context, cf. [L], and for analytic
polyhedron in [P3].

The deformation functor of an isolated singularity is usually not universal because de-
formations often contain trivial subfamilies in any representing family as, for instance, in
the case of isolated complete intersection singularities. One approach to the construction of
moduli for singularities may be the study of those deformations that do not contain trivial
subfamilies. This can be done by restricting the versal family to subgerms which have an
universal property at least for all families induced from it.

The associated infinitesimal notion corresponds to injectivity of the relative Kodaira-
Spencer map of the deformation. A formal version is given in terms of a lifting property of
vector fields of X0.

The obstruction for enlarging a modular subgerm is induced from the Lie bracket

T 0(X0)× T 1(X0) −→ T 1(X0) (1)

¿From the definition follows that a modular deformation is formal modular, and a formal
modular family is infinitesimal modular. We shall show that infinitesimal modular is equi-
valent to formal modular. But, we only can prove so far that modularity follows from formal
modularity under an additional assumption on teh critical locus.

In [M2] the author has characterised formal modular families of ICIS as flattening of the
relative Tjurina module of the deformation. Based on implementations of the computation
of versal deformations, cf. [M1], and of the flattening algorithm in Singular, cf. [S],
explicit computations of interesting examples are possible.
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Moreover, we prove an extension of the characterisation of formal modular deformations
as flattening of the first relative tangent cohomology of the versal deformation to the case
of space curve singularities. This is caused by the freeness of the relative normal bundle of
the total space of an embedded versal deformation in this case, cf. [St].

1 Modular deformations and obstructions

Throughout the paper we are dealing with analytic germs. Let X0 be an isolated sin-
gularity. Choose a miniversal deformation F : X −→ S. By definition of versality any
other deformation of X0 over T is induced from the family F , i.e. the functorial map
ξT : Hom(T,S) −→ DefX0(T), g 7→ g∗(F ), is surjective.

Definition 1.1. A subgerm M ⊂ S of a miniversal deformation F : X −→ S is called
modular if for all germs T the induced maps ξT restricted to ξ−1

T (ξT(Hom(T,M)) are
injective.

Any two modular strata of X0 are uniquely isomorphic and independent of the miniversal
family by definition. Only few examples of modular strata have been computed so far.
For instance, the modular stratum of a quasi homogeneous isolated complete intersection
singularity (ICIS) consists of its reduced τ -constant stratum, cf. [A].

Any pull back of an automorphism of M to the modular family induces an isomorphism
of the modular family by definition. Hence, infinitesimally, it corresponds to the statement
that an vector field on M causes a trivial infinitesimal deformation of the modular family,
or equivalently, that the generalised Kodaira-Spencer map is injective. Therefor we can
define an infinitesimal version:

Definition 1.2. Let F : X → S be a miniversal deformation of X0. Its restriction to a
subgerm M ⊂ S is called infinitesimal modular iff the restriction to M of the Kodaira-Spencer
map θF is injective,

θF : T 0(S) −→ T 1(X,S), δ 7→ cl(δ(F )).

Take a lift φ to the ambient space ICn of an isomorphism of X0 and apply φ × idM to
the modular family. We obtain another equivalent deformation over M. We formulate this
fact on the level of vector fields in the following notion.

Definition 1.3. Let F : X → S be a miniversal deformation of X0. Its restriction to a
subgerm M ⊂ S is called formal modular iff for any Artinean subgerm A ⊂M the associated
restriction maps ηA of vertical vector fields are surjective:

ηA : T 0(XA,A) −→ T 0(X0).

Remark 1.4. Note, that this lifting condition for vector fields is fulfilled iff ηM itself is
surjective.

The notation ’formal’ is motivated by the following
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Lemma 1.5. A subgerm M of a miniversal deformation F is infinitesimal modular iff it
is modular over any Artinean subgerm of M.

In order to prove the lemma we construct an obstruction map as follows: Let A ⊂ A′

be a small extension of Artinean subgerms of S by an ideal IA ⊂ OA′ . The Lie bracket (1)
of the tangent cohomology of X0 in degree 0 and 1 induces a map

oA′,A : T 0(X0)⊗ IA −→ T 1(X0)

which has the following obstruction property: Assume F is modular over A then F is
modular over A′ iff oA′,A is the zero map.

Proposition 1.6. A subgerm M of a miniversal deformation F is infinitesimal modular
iff it is formal modular.

The idea of the prove consists in a careful analysis of the so called Kodaira-Spencer
sequence of the family F and its evaluation at the special fibre. We use arguments similar
to that from [P2, 1.8] or [M2, 6]:

0 → T 0(X,S) −→ T 0(F ) −→ T 0(S) θF−→ T 1(X,S) → · · ·
ηS ↓ σ0 ↓ ↓ ↓

0 → T 0(X0) −→ T 0(F,X0) −→ T(S,0) θ0−→ T 1(X0) → · · · .

The equivalence of modularity and formal modularity, as it holds for deformations of com-
plete varieties or analytic polyhedron, cf. [P1], [P3], is open in a pure local context. We
can only show it under an additional assumption.

Theorem 1.7. An formal modular subgerm M of a miniversal deformation F of X0 is
modular if the critical locus of X is umramified over M.

As examples from the next section will show, that examples of formal modular families
exist that have a splitting singular locus.

Remark 1.8. The unramification of the critical locus can be interpreted as a kind of finite-
ness condition: It implies the coherence of T 1(XM,M) and that the family is simultaneously
finitely determined. Note, that we lose coherence of the tangent cohomology in a strict local
context. This can be avoided in the category of multi germs. But, when doing computation
in the next section we strictly need the category of local analytic (or formal) algebras.

2 Flatness of the Tjurina module

The condition of formal modularity may be reformulated as a flatness condition. Let k
be the number of generators of the ideal X0 ⊂ ICn: I0 = (f1, . . . , fk) ⊂ On = IC{X}.
The miniversal family F may be chosen as embedded deformation. The total deformation
space is then defined by an ideal I = (F1, . . . , Fk) ⊂ OS{X}. Denote by J(F ) the relative
Jacobian matrix of F over S modulo I.
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Proposition 2.1. A subgerm M of a miniversal deformation F is formal modular iff
OkX/J(F ) is flat over M.

We have the following commutative diagram with exact rows:

0 → T 0(X,S) −→ OnX
J(F )−→ OpX −→ OkX/J(F ) → 0

ηS ↓ ↓ ↓ ↓
0 → T 0(X0) −→ OnX0

J(f)−→ OpX0
−→ OkX0

/J(f) → 0.

(2)

J(f) is a representation of OkX/J(F ) as OX-module lifting the representation of OkX0
/J(f).

The module of vector fields can be considered as syzygies of the columns of the representa-
tion matrices. The surjectivity of ηM means that any syzygy over the special fibre lifts to
a syzygy over M. This is exactly a characterisation of flatness, cf. [E, 6.].

If X0 is an ICIS the left side modules in (2) are just the Tjurina modules, hence we get:

Corollary 2.2. If X0 is an ICIS then a subgerm M ⊂ S of the base space of a miniversal
deformation is formal modular iff the relative Tjurina module T 1(X,S) is flat over M.

Using the algorithm from [M2] we are able to compute modular deformations via
flattening of T 1. The simplest so far found example of a formal modular deformation
not being τ -constant is a deformation of the following (degenerated with respect to its
Newton boundary, hence not semi-quasi homogeneous) curve singularity: X0 defined by
f0 = (x− y3)2(x+ 2y3) + y11 with τ = 16 and µ = 18. Consider the family X→ T defined
by f(x, y, t) = ft := f0 + t2y9 + 2ty10 over T = IC1 with τ(ft) = 15 and µ(ft) = 16 for
t 6= 0. But its Tjurina algebra T (ft) := IC[t]{x, y}/(ft, ∂xft, ∂yft) is flat over IC[t]. We find
two interesting observations: The family T 1(X,T) is not coherent over T, because it is
flat, but not free. Moreover, ft has another critical value for t 6= 0 at (−t3,−t), hence its
global Tjurina number is constant and the critical locus splits. This does not occur for a
µ-constant deformation.

3 Space curve singularities

It is not clear at all, whether the statemanet (2.2) holds in general or under slightly weaker
assumption as T 2(X0) = 0, i.e. X0 unobstructed and S smooth. But, for space curves,
which are unobstructed, we have many other informations, cf. [St]:

Lemma 3.1. The relative normal bundle NX|S of the total space of an embedded versal
deformation X→ S of a space curve singularity is free as OS-module.

Corollary 3.2. A deformation of space curve singularities is formal modular iff its relative
first tangent cohomology is flat over the base space.

Here we may use the same arguments as in (2.1) applied to a similar diagram (2)
replacing the rows by the exact sequence

0→ T 0(X,S) −→ θ( ICn × S,S)⊗OX
J(F )−→ NX|S−→T 1(X,S)→ 0

and its specialisation over the special fibre.
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