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Abstract

We characterize the hull resolution of a monomial curve in the three dimensional
affine space and compare it with its minimal free resolution. Concretely, we give a
necessary and sufficient condition for which the hull resolution is minimal in terms of
the semigroup associated with.

Introduction

Let k[x] := k[x1, . . . , xn] be the polynomial ring in n variables over a field k. Throughout
this paper xu will denote the monomial xu1

1 · · ·xun
n with u = (u1, . . . , un) ∈ Zn0 .

The hull resolution of the Zn/L-graded lattice ideal

IL := 〈 xu − xv | u− v ∈ L with u,v ∈ Zn0 〉,

where L ⊆ Zn is a Z-module such that L ∩ Zn0 = {0}, was introduced by D. Bayer and
B. Sturmfels in [2]. In that work, the authors construct a new canonical free resolution of
IL from an unbounded convex polyhedron Pt (originally introduced by I. Barany, R. Howe
and H. Scarf in [1]) and a regular cell complex X (cf. [4] pp. 253–255).

The hull resolution of a lattice ideal is far from being minimal, but, unlike minimal reso-
lutions, it respects symmetry and preserves the action on IL by the lattice L. Furthermore,
the involved free modules are of finite rank over k[x] and there are finitely many of them.
This makes interesting the comparison of minimal and hull resolutions of lattice ideals in
order to decide when they agree.

In this paper, we center our attention in a particular class of lattice ideals. We only
consider the ideals defining monomial curves in the 3-dimensional affine space. From a
new and explicit description of the minimal resolution in terms of combinatorial arguments
(Theorem 1.2), we obtain a complete characterization of the hull resolution of a monomial
curve in A3(k), our main Theorem (2.6). As a corollary we give a necessary and sufficient
condition for which the hull resolution of a monomial curve in A3(k) is minimal in terms
of the semigroup associated with.

Finally, we would like to emphasize that the study of the connections between semigroups
and lattice ideals is an active research field as it can be seen through the abundant literature
about it (for more details see [5]).
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1 The minimal resolution of a monomial curve in A3(k).

Let S be a semigroup of positive integers generated by {n1, n2, n3}, with ni ∈ Z+, i = 1, 2, 3,
and gcd(n1, n2, n3) = 1, and let G(S) ⊂ Z be the group generated by S.

We consider u1 = (1, 0, 0), u2 = (0, 1, 0) and u3 = (0, 0, 1) in Z3, and the Z-linear
surjective map π : Z3 −→ G(S), where π(ui) = ni, i = 1, 2, 3. We write L for the kernel of
π,

L := ker π = {v = (v1, v2, v3) ∈ Z3 |
3∑
i=1

vini = 0}

Obviously L ⊆ Z3 is a lattice such that L ∩ Z3
0 = {0}. Thus, we have that the ideal of the

affine monomial curve {(λn1 , λn2 , λn3) | λ ∈ k} is the lattice ideal IL (cf. [6]). Since the
lattice L is defined from the semigroup S, in the following we will write IS for IL.

We define α1 ∈ Z+ to be the least positive integer such that α1n1 ∈ Z0n2 +Z0n3 and α2

and α3 analogously. That choice of α1, α2 and α3 implies the existence of γij and γik ∈ Z0

(not uniquely defined) such that αini = γijnj+γiknk, for each threesome {i, j, k} = {1, 2, 3}.

Theorem 1.1. ([6, 3]) With the notation introduced above:

(a) IS is complete intersection (equivalently S is symmetric) if and only if there exist
i, j ∈ {1, 2, 3}, i 6= j such that αini = αjnj . In this case, the only minimal binomial
systems of generators (except unity in k[x]) is

F1 = xαi
i − x

αj

j , F2 = xαk
k − x

γki
i x

γkj

j ,

for some threesome {i, j, k} = {1, 2, 3}. Moreover, if αknk 6= αini, then such a three-
some is unique.

(b) IS is not complete intersection (equivalently S is not symmetric) if and only if γki, γkj
are both not zero for every threesome {i, j, k} = {1, 2, 3}. In this case, one has that the
pairs {γki, γkj} are unique. Moreover, the only minimal binomial system of generators
(except unity in k[x]) is

F1 = xα1
1 − x

γ12
2 xγ133 , F2 = xα2

2 − x
γ21
1 xγ233 , F3 = xα3

3 − x
γ31
1 xγ322 ,

where 0 < γki < αi, i = 1, 2, 3 and k 6= i.

The explicit description of the minimal generating sets of IS in above theorem can be
found in [6], and the uniqueness can be deduced from the combinatorial description of these
sets (cf. [3]) by means of some simplicial complexes associated with the elements in the
semigroup.

Let k[S] ' k[x]/IS be the k-algebra associated with the semigroup, and

Φ0 : k[x] −→ k[S],

the presentation map.
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Theorem 1.2. With the same notation as above

(a) If IS is complete intersection (equivalently S is symmetric) the minimal free resolution
of IS is:

0 −→ k[x] Φ2−→ k[x]2 Φ1−→ k[x] Φ0−→ k[S] −→ 0.

Moreover, Φ1 and Φ2 can be represented respectively by the matrices

A1 = (F1 F2) and A2 =
(

F1

−F2

)
,

where the F1 and F2 denote the binomials defined in Theorem 1.1(a).

(b) If IS is not complete intersection (equivalently S is not symmetric) the minimal free
resolution of IS is:

0 −→ k[x]2 Φ2−→ k[x]3 Φ1−→ k[x] Φ0−→ k[S] −→ 0.

Moreover, Φ1 and Φ2 can be represented respectively by the matrices

A1 = (F1 F2 F3) and A2 =

 xγ322 xγ233

xγ133 xγ311

xγ211 xγ122


where the F1, F2 and F3 denote the binomials defined in Theorem 1.1(b).

Remark 1.3. There exist commutative algebra results (cf. [8]) which assure that a free
resolution of IS is 0 −→ k[x]2 −→ k[x]3 −→ k[x] −→ k[S] −→ 0. These arguments are used
in [9] in order to get a similar explicit description of the minimal free resolution of IS when
S is not symmetric.

Corollary 1.4. ([7]) k[S] is Gorenstein if and only if IS is complete intersection (equiva-
lently S is symmetric).

2 The hull resolution of a monomial curve in A3(k).

Our aim in this section consist of characterize the hull resolution of IS in terms of the
semigroup S.

First of all we will study the structure of the hull complex X = hull(ML) ([2]). Since
L ∼= Z2 we will start with a characterization of all Z2-invariant triangulations of R2 whose
set of vertices is Z2.

Given a finite set of vertices {v0,v1, . . . ,vr}, we write 〈v0,v1, . . . ,vr〉 for{
r∑
i=0

λivi ∈ Rn |
r∑
i=0

λi = 1 with λi > 0

}
.
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We start seeing that he only infinite L-invariant triangulations of L ⊗Z R whose set of
vertices is L are determined by a basis of L. That is, any triangulation K of L⊗Z R of this
kind has got as facets 〈0, e1, e2〉+b and 〈0, e2, e2−e1〉+b, for every b ∈ L and some basis
B = {e1, e2} of L. Then, we obtain the following result:

Theorem 2.1. There exists a basis B = {e1, e2} of L such that the 2-cells of X consists
of, one and only one, the following configurations:

(1) squares 〈t0, te1 , te2 , te2−e1〉 + b such that 〈t0, te2〉 + b is not a 1-cell of X, for each
b ∈ L;

(2) triangles 〈t0, te1 , te2〉+ b and 〈t0, te2 , te2−e1〉+ b, for each b ∈ L.
Once we have limited the suitable forms of the hull complex X, we can restrict the hull

resolution of IS to the two following cases.

Corollary 2.2. The hull resolution of IS admits exclusively two possibilities:

0 −→ k[x]
f2−→ k[x]2

f1−→ k[x] Φ0−→ k[S] −→ 0

or
0 −→ k[x]2

f2−→ k[x]3
f1−→ k[x] Φ0−→ k[S] −→ 0.

In the view of result above, we have only to determine when it happens one or another
resolution. This fact will only depend on the semigroup S. The non symmetric case can be
reduced to well-known results (generic case in the sense of [2], Example 3.12).

Proposition 2.3. If S is not symmetric, then the hull resolution of IS is minimal. So the
hull resolution is 0 −→ k[x]2

f2−→ k[x]3
f1−→ k[x] Φ0−→ k[S] −→ 0.

Assume now that IS is complete intersection. By Theorem 1.1(a) we have that a minimal
system of generators of IS is F1 = xαi

i − x
αj

j and F2 = xαk
k − x

γki
i x

γkj

j for some threesome
{i, j, k} = {1, 2, 3}. Without loss of generality, we can suppose i = 1, k = 2 and j = 3, so
F1 = xα1

1 − x
α3
3 and F2 = xα2

2 − x
γ21
1 xγ233 .

Lemma 2.4. If IS is complete intersection, with the notation above, γ21 = γ23 if and only if
Γ := 〈t0, tv1 , tv2 , tv1+v2〉 is a 2-cell of X, where v1 = (α1, 0,−α3) and v2 = (−γ21, α2,−γ23).

Lemma 2.5. If IS is complete intersection, with the notation above, γ21 6= γ23 (for every
possible choice of them) if and only if the 2-cells of X are triangles.

All these results are the proof of our main theorem.

Theorem 2.6. Let S be a semigroup of positive integers generated by {n1, n2, n3}, with
ni ∈ Z+, i = 1, 2, 3, and gcd(n1, n2, n3) = 1. The hull resolution of IS is

0 −→ k[x]
f2−→ k[x]2

f1−→ k[x] Φ0−→ k[S] −→ 0,

when S is symmetric with αini = αjnj and there exist γki = γkj such that αknk = γkini +
γkjnj , for some threesome {i, j, k} = {1, 2, 3}. Otherwise the hull resolution of IS is

0 −→ k[x]2
f2−→ k[x]3

f1−→ k[x] Φ0−→ k[S] −→ 0.
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Corollary 2.7. Let S be a semigroup of positive integers generated by {n1, n2, n3}, with
ni ∈ Z+, i = 1, 2, 3, and gcd(n1, n2, n3) = 1. The hull resolution of IS is minimal if and
only if

• S is not symmetric, or

• S is symmetric with αini = αjnj and there exist γki = γkj such that αknk = γkini +
γkjnj , for some threesome {i, j, k} = {1, 2, 3}.

References

[1] I. Barany R. Howe and H. Scarf. The complex of maximal lattice free simplices.
Mathematical Programming, Ser. A, 66:273–281, 1994.

[2] D. Bayer and B. Sturmfels. Cellular resolutions of monomial modules. J. Reine Angew.
Math, 502:123–140, 1998.

[3] E. Briales, A. Campillo, C. Marijuán, and P. Pisón. Minimal systems of generetors for
ideals of semigroups. J. Pure Appl. Algebra, 127:7–30, 1998.

[4] W. Bruns and J. Herzog. Cohen Macaulay rings. Cambrigde University Press., 1993.

[5] A. Campillo and P. Pisón. Toric Mathematics from semigroup viewpoint. Ring Theory
and Algebraic Geometry, Ed: A. Granja, JA. Hermida and A. Verschoren. Series:
Lectures Notes in Pure and Applied Mathematics, 221(5):95-112, 2001.

[6] J. Herzog. Generators and relations of semigroups and semigroups rings. Manuscripta
Math, 3:175–193, 1970.

[7] E. Kunz. The value-semigroup of a one-dimensional Gorenstein ring. Proc. Amer.
Math. Soc., 25:748–751, 1970.

[8] E. Kunz. Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser,
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