Apellidos Nombre

Ejercicio 1) Valor 2.5 puntos. Sean L_1 , L_2 y L_3 subespacios vectoriales del \mathbb{R} -espacio vectoriale \mathbb{R}^3 , donde

$$L_1 = L((1,1,0),(0,1,0)),$$

 L_2 de ecuaciones paramétricas $\{x_1 = \lambda, x_2 = \mu, x_3 = 0\}$ y L_3 de ecuaciones implícitas $\{x_2 = 0\}$. Se pide:

- (1) Hallar la dimensión y unas ecuaciones implícitas de las variedades lineales $L_1 + L_2 + L_3$, $L_1 \cap L_2 \cap L_3$ y $L_2 + L_3$.
- (2) Hallar una base del espacio vectorial cociente \mathbb{R}^3/L_1 y probar que los espacios vectoriales $\mathbb{R}^3/L_1, \mathbb{R}^3/L_2$ y \mathbb{R}^3/L_3 son isomorfos entre sí.

Ejercicio 2) Valor 2.5 puntos. Sea $f: \mathbb{R}^4 \to \mathbb{R}^3$ la aplicación lineal definida por

$$f(u_1) = v_1 + v_2 - v_3$$
$$f(u_2) = v_1 - v_2$$
$$f(u_3) = v_1$$
$$f(u_4) = v_2$$

donde $\{u_1,u_2,u_3,u_4\}$ y $\{v_1,v_2,v_3\}$ son bases de \mathbb{R}^4 y \mathbb{R}^3 respectivamente. Se pide:

- (1) Hallar una base de cada una de las variedades lineales Imf y Kerf.
- (2) Si $L \subset \mathbb{R}^4$ es la variedad lineal de ecuaciones $\{x_1 = 0\}$ y $L' \subset \mathbb{R}^3$ la variedad de ecuaciones $\{x'_1 = 0\}$, deducir unas ecuaciones implícitas de las variedades lineales $L \cap f^{-1}(L')$ y L' + f(L).

Ejercicio 3) Valor 2.5 puntos. Sea el \mathbb{R} - espacio vectorial $V = \mathbb{R}^3$ y $\varphi : V \times V \to \mathbb{R}$ la forma bilineal cuya matriz respecto a una base de V es $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$

- (1) Hallar una base de V respecto de la cual la matriz de φ sea diagonal.
- (2) Demostrar si φ es o no un producto escalar.

Ejercicio 4) Valor 2.5 puntos Sea $f: \mathbb{R}^3 \mapsto \mathbb{R}^3$ el endomorfismo de ecuaciones

$$x'_1 = x_1 - x_2,$$

 $x'_2 = x_2 - x_3,$
 $x'_3 = x_1 - x_3$

y sean $L_1 = L((1,0,0))$ y $L_2 = L((1,0,0),(0,1,0))$, se pide:

- (1) Probar si L_1 y L_2 son o no invariantes por f.
- (2) Demostrar si f es o no diagonalizable y si lo fuera, encontrar una base B tal que $M_B(f)$ sea diagonal.