Álgebra Lineal 1 de febrero de 2005

Soluciones

Ejercicio 1.- (2.5 puntos). En el espacio vectorial $V = \mathbb{R}^4$, consideremos las siguientes variedades lineales:

$$L_1 = L((1,0,1,1),(2,1,-1,0),(0,-1,3,2)) L_2 \equiv \begin{cases} x_1 + x_4 &= 0 \\ 2x_1 + x_2 + x_3 + x_4 &= 0. \end{cases}$$

- 1. Calcular una base y unas ecuaciones implícitas independientes de L_1 , L_2 , $L_1 + L_2$ y $L_1 \cap L_2$.
- 2. Calcular una base de V/L_2 .

Solución:

1. Una base de L_1 es $\{(1,0,1,1),(0,-1,3,2)\}$. Unas ecuaciones implícitas de L_1 son:

$$\begin{cases} x_1 - 3x_2 - x_3 = 0 \\ x_1 - 2x_2 - x_4 = 0 \end{cases}$$

Una base de L_2 es $\{(0,-1,1,0),(-1,1,0,1)\}$. Unas ecuaciones implícitas de L_2 son:

$$\begin{cases} x_1 + x_4 = 0 \\ 2x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

Una base de $L_1 + L_2$ es $\{(1,0,0,0), (0,1,0,1), (0,0,1,1)\}$. Unas ecuaciones implícitas de $L_1 + L_2$ son:

$$\{x_2 + x_3 - x_4 = 0\}.$$

Una base de $L_1 \cap L_2$ es $\{(-1, -1, 2, 1)\}$. Unas ecuaciones implícitas de $L_1 \cap L_2$ son:

$$\begin{cases} x_1 + x_4 = 0 \\ x_2 + x_4 = 0 \\ x_3 - 2x_4 = 0 \end{cases}$$

2. Una base de V/L_2 es $\{(0,0,1,0) + L_2, (0,0,0,1) + L_2\}$.

Ejercicio 2.- (4 puntos). Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo cuya matriz, respecto de la base canónica de \mathbb{R}^3 , es:

$$A = \left(\begin{array}{ccc} \alpha & 0 & 0\\ 2 & 0 & -1\\ 2 & -1 & 0 \end{array}\right)$$

- 1. Estudiar para qué valores de α es f diagonalizable.
- 2. Sea $\alpha=1$. Hallar una matriz diagonal D, y una base de \mathbb{R}^3 respecto de la cual la matriz de f sea D.
- 3. Sea $\alpha = 0$ y sea la variedad lineal L = L((1,1,1)). Hallar una base o unas ecuaciones implícitas independientes de las variedades: Ker(f), Img(f), f(L) y $f^{-1}(L)$.

Solución:

1.

$$|A - \lambda I| = \begin{vmatrix} \alpha - \lambda & 0 & 0 \\ 2 & -\lambda & -1 \\ 2 & -1 & -\lambda \end{vmatrix} = (\alpha - \lambda)(\lambda^2 - 1) = (\alpha - \lambda)(\lambda + 1)(\lambda - 1).$$

Los autovalores son $1, -1, \alpha$. Por tanto, si $\alpha \neq 1, -1$, entonces hay tres autovalores simples, luego A es diagonalizable. Queda estudiar los casos $\alpha = 1$ y $\alpha = -1$.

Si $\alpha = 1$, entonces hay un autovalor doble: $\lambda = 1$. Para este autovalor, se tiene

$$rg(A-I) = rg \begin{pmatrix} 0 & 0 & 0 \\ 2 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} = 1,$$

luego en este caso A también es diagonalizable.

Si $\alpha = -1$, entonces hay un autovalor doble: $\lambda = -1$. Para este autovalor, se tiene

$$rg(A+I) = rg \begin{pmatrix} 0 & 0 & 0 \\ 2 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix} = 2,$$

luego en este caso A no es diagonalizable.

2. Si $\alpha = 1$, hay un autovalor simple $\lambda = -1$ y un autovalor doble $\lambda = 1$.

Para $\lambda = -1$, calculamos un autovector asociado:

$$\begin{pmatrix} 2 & 0 & 0 \\ 2 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v}_1 = (0, 1, 1).$$

Para $\lambda = 1$, calculamos dos autovectores asociados:

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \mathbf{v}_2 = (1, 2, 0) \\ \mathbf{v}_3 = (1, 0, 2).$$

Por tanto, la base pedida es $\{(0,1,1),(1,2,0),(1,0,2)\}$, y la matriz diagonal es

$$D = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

3. Para $\alpha = 0$ se tiene:

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 2 & 0 & -1 \\ 2 & -1 & 0 \end{array}\right).$$

Unas ecuaciones implícitas independientes de Ker(f) son:

$$\begin{cases} 2x_1 - x_3 = 0 \\ 2x_1 - x_2 = 0 \end{cases}$$

Una base de Img(f) es $\{(0,1,0),(0,0,1)\}.$

Una base de f(L) es $\{(0,1,1)\}.$

No es necesario calcular $f^{-1}(L)$: Como el vector (1,1,1) no pertenece a Img(f), se tiene $f^{-1}(L) = Ker(f)$, por lo que ya conocemos unas ecuaciones implícitas.

Ejercicio 3.- (2.5 puntos). Sea $B = \{u_1, u_2, u_3\}$ una base del \mathbb{R} - espacio vectorial \mathbb{R}^3 y $\varphi : \mathbb{R}^3 \times \mathbb{R}^3 \mapsto \mathbb{R}$ la forma bilineal cuya matriz respecto a la base B es

$$A = \left(\begin{array}{rrr} 5 & -1 & -2 \\ -1 & 3 & 0 \\ -2 & 0 & 2 \end{array}\right).$$

Se pide:

- 1. Calcular una base B' de \mathbb{R}^3 tal que la matriz $M_{B'}(\varphi)$ sea diagonal.
- 2. Probar que φ es un producto escalar y calcular una base ortonormal del espacio euclídeo correspondiente.
- 3. Probar que si φ_1 es otro producto escalar sobre el mismo espacio vectorial, y B_1 otra base de dicho espacio vectorial, las matrices $M_B(\varphi)$ y $M_{B_1}(\varphi_1)$ son congruentes.

Solución:

1. Una base B' puede ser $\{(1,0,0),(1,5,0),(3,1,7)\}$, y su matriz diagonal asociada es:

$$D = \left(\begin{array}{ccc} 5 & 0 & 0 \\ 0 & 70 & 0 \\ 0 & 0 & 56 \end{array}\right).$$

2. φ es un producto escalar porque es congruente a la matriz diagonal D, en la que los elementos de su diagonal principal son todos positivos. Una base ortonormal es:

$$\left\{ \left(\frac{1}{\sqrt{5}},0,0\right), \left(\frac{1}{\sqrt{70}},\frac{5}{\sqrt{70}},0\right), \left(\frac{3}{\sqrt{56}},\frac{1}{\sqrt{56}},\frac{7}{\sqrt{56}}\right) \right\}.$$

3. La matriz de un producto escalar es siempre congruente a la matriz identidad, por tanto tendremos $P^tM_B(\varphi)P = I = Q^tM_{B_1}(\varphi_1)Q$, donde $P \neq Q$ son matrices invertibles. Por tanto, tendremos

$$M_{B_1}(\varphi_1) = (Q^t)^{-1} P^t M_B(\varphi) P Q^{-1} = (P Q^{-1})^t M_B(\varphi) (P Q^{-1}),$$

donde PQ^{-1} es invertible al ser producto de matrices invertibles, luego $M_B(\varphi)$ y $M_{B_1}(\varphi_1)$ son congruentes.

Ejercicio 4.- (1 punto). Sean V y V' dos espacios vectoriales sobre un cuerpo K, y sea $f: V \to V'$ una aplicación lineal. Sean $\mathbf{u}_1, \ldots, \mathbf{u}_r$ vectores de V, denotemos $\mathbf{u}_i' = f(\mathbf{u}_i) \ \forall i = 1, \ldots, r$, y sea $\{\mathbf{v}_1, \ldots, \mathbf{v}_s\}$ una base de Ker(f). Demostrar las afirmaciones siguientes:

- 1. Si $\{\mathbf{u}_1', \dots, \mathbf{u}_r'\}$ es linealmente independiente, entonces $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ es linealmente independiente.
- 2. Si $\{\mathbf{u}_1',\ldots,\mathbf{u}_r'\}$ es una base de Im(f), entonces $\{\mathbf{u}_1,\ldots,\mathbf{u}_r,\mathbf{v}_1,\ldots,\mathbf{v}_s\}$ es una base de V.

Solución:

1. Supongamos que $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ es linealmente dependiente. En este caso existirán unos escalares $\alpha_1, \dots, \alpha_r$, no todos nulos, tales que $\alpha_1 \mathbf{u}_1 + \dots + \alpha_r \mathbf{u}_r = \mathbf{0}$. Aplicando f a esta suma (con lo que obtendremos el vector $\mathbf{0} \in V'$), se obtiene

$$f(\alpha_1 \mathbf{u}_1 + \dots + \alpha_r \mathbf{u}_r) = \alpha_1 f(\mathbf{u}_1) + \dots + \alpha_r f(\mathbf{u}_r) = \alpha_1 \mathbf{u}_1' + \dots + \alpha_r \mathbf{u}_r' = \mathbf{0}.$$

Pero esto contradice la hipótesis, puesto que $\{\mathbf{u}'_1, \dots, \mathbf{u}'_r\}$ es linealmente independiente. Por tanto, $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ debe ser linealmente independiente.

2. Por hipótesis, $\dim(Ker(f)) = s$ y $\dim(Im(f)) = r$, luego

$$\dim(V) = \dim(Ker(f)) + \dim(Im(f)) = r + s.$$

Por tanto, sólo hay que probar que $\{\mathbf{u}_1,\ldots,\mathbf{u}_r,\mathbf{v}_1,\ldots,\mathbf{v}_s\}$ es linealmente independiente.

Supongamos que no lo es. En este caso existirán unos escalares $\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_s$, no todos nulos, tales que $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_r \mathbf{u}_r + \beta_1 \mathbf{v}_1 + \cdots + \beta_s \mathbf{v}_s = \mathbf{0}$. Aplicando f a esta suma (y teniendo en cuenta que $f(\mathbf{v}_i) = \mathbf{0}$ para todo i) se tiene:

$$f(\alpha_1\mathbf{u}_1 + \dots + \alpha_r\mathbf{u}_r + \beta_1\mathbf{v}_1 + \dots + \beta_s\mathbf{v}_s) = \alpha_1f(\mathbf{u}_1) + \dots + \alpha_rf(\mathbf{u}_r) + \beta_1f(\mathbf{v}_1) + \dots + \beta_sf(\mathbf{v}_s) = \alpha_1f(\mathbf{v}_1) + \dots + \alpha_rf(\mathbf{v}_r) + \beta_1f(\mathbf{v}_r) + \dots + \beta_sf(\mathbf{v}_s) = \alpha_1f(\mathbf{v}_r) + \alpha_rf(\mathbf{v}_r) + \alpha_rf$$

$$= \alpha_1 f(\mathbf{u}_1) + \dots + \alpha_r f(\mathbf{u}_r) = \alpha_1 \mathbf{u}_1' + \dots + \alpha_r \mathbf{u}_r' = \mathbf{0}.$$

Como $\{\mathbf{u}_1', \dots, \mathbf{u}_r'\}$ es una base (y por tanto es linealmente independiente), se tiene $\alpha_1 = \dots = \alpha_r = 0$. Pero entonces, en V, se tiene

$$\beta_1 \mathbf{v}_1 + \dots + \beta_s \mathbf{v}_s = \mathbf{0}.$$

Como $\{\mathbf{v}_1,\ldots,\mathbf{v}_s\}$ es también una base, esto implica que $\beta_1=\cdots=\beta_s=0$. Pero esto contradice el hecho de que los escalares $\alpha_1,\ldots,\alpha_r,\beta_1,\ldots,\beta_s$ no sean todos nulos. Por tanto, $\{\mathbf{u}_1,\ldots,\mathbf{u}_r,\mathbf{v}_1,\ldots,\mathbf{v}_s\}$ es linealmente independiente, y como dim(V)=r+s, se trata de una base.