# PREPUBLICACIONES DE LA FACULTAD DE MATEMÁTICAS DE LA UNIVERSIDAD DE SEVILLA 

Homogenising differential operators<br>F.J. Castro-Jiménez and L. Narváez-Macarro

Prepublicación no 36 (Junio-1997)

Sección Álgebra, Computación, Geometría y Topología

# Homogenising differential operators* 

F.J. Castro-Jiménez and L. Narváez-Macarro

June, 1997

## Introduction

In [5] D. Lazard has used homogenisation of polynomials to compute the initial ideal $\operatorname{gr}(J)$ of an ideal $J$ generated by polynomials. In this paper we introduce a homogenisation process of linear differential operators and we consider "admissible" filtrations on the Weyl algebra, generalising $L$-filtrations [4]. Using an idea similar to Lazard's, we compute generators of a graded ideal $\operatorname{gr}(I)$ with respect to such filtrations. As is proved in [1], this is a key step to compute the slopes of a $\mathcal{D}$-module.

The Weyl algebra $A_{n}(\mathbf{K})$ of order $n$ over a field $\mathbf{K}$ is the central $\mathbf{K}$-algebra generated by elements $x_{i}, D_{i}, i=1, \ldots, n$, with relations $\left[x_{i}, x_{j}\right]=\left[D_{i}, D_{j}\right]=$ $0,\left[D_{i}, x_{j}\right]=\delta_{i j}$. It is naturally filtered by the Bernstein filtration associated to the total degree in the $x_{i}$ 's and $D_{i}$ 's. Now consider the graded K-algebra $B$, generated by $x_{i}, D_{i}, i=1, \ldots, n$, and $t$ with homogeneous relations $\left[x_{i}, t\right]=$ $\left[D_{i}, t\right]=\left[x_{i}, x_{j}\right]=\left[D_{i}, D_{j}\right]=0,\left[D_{i}, x_{j}\right]=\delta_{i j} t^{2}$. Notice that $A_{n}(\mathbf{K})$ is the quotient of $B$ by the two-sided ideal, generated by the central element $t-1$. In fact, this algebra coincides with the Rees algebra associated to the Bernstein filtration of $A_{n}(\mathbf{K})$. The homogenisation of an element in $A_{n}(\mathbf{K})$ will be an element in $B$. The homogenisation process for differential operators we present here has the same formal properties as the usual homogenisation of commutative polynomials, and simplifies, considerably, the one studied in [1]. We establish the validity of the division theorem and Buchberger's algorithm to compute standard bases for the algebra $B$ as in [3].

Sections 1 and 2 are devoted to the notions of admissible filtration and $\delta$ standard basis. Section 3 deals with the main purpose of this paper: homogenisation of differential operators and effective computation of $\delta$-standard bases.

We would like to thank Lê Dũng Tráng for valuable suggestions.

[^0]
## §1 Admissible filtrations on the Weyl algebra

Let $\mathbf{K}$ be a field. Let $A_{n}(\mathbf{K})$ denote the Weyl algebra of order $n \geq 1$, i.e.

$$
\begin{gathered}
A_{n}(\mathbf{K})=\mathbf{K}[\underline{x}][\underline{D}]=\mathbf{K}\left[x_{1}, \ldots, x_{n}\right]\left[D_{1}, \ldots, D_{n}\right], \\
{\left[x_{i}, x_{j}\right]=\left[D_{i}, D_{j}\right]=0,\left[D_{i}, x_{j}\right]=\delta_{i j} .}
\end{gathered}
$$

Given a non-zero element

$$
P=\sum_{\alpha, \beta \in \mathbb{N}^{n}} a_{\alpha, \beta} \underline{x}^{\alpha} \underline{D}^{\beta} \in A_{n}(\mathbf{K}),
$$

we denote by $\mathcal{N}(P)$ its Newton diagram:

$$
\mathcal{N}(P)=\left\{(\alpha, \beta) \in \mathbb{N}^{2 n} \mid a_{\alpha, \beta} \neq 0\right\} .
$$

Definition 1.1.- Let $\mathbf{K}$ be a field. An order function on $A_{n}(\mathbf{K})$ is a mapping $\delta: A_{n}(\mathbf{K}) \rightarrow \mathbb{Z} \cup\{-\infty\}$ such that:

1. $\delta(c)=0$ if $c \in \mathbf{K}, c \neq 0$.
2. $\delta(P)=-\infty$ if and only if $P=0$.
3. $\delta(P+Q) \leq \max \{\delta(P), \delta(Q)\}$.
4. $\delta(P Q)=\delta(P)+\delta(Q)$.

REMARK 1.2.- If $\delta$ is an order function on $A_{n}(\mathbf{K})$, we have $\delta\left(\underline{x}^{\alpha} \underline{D}^{\beta} \underline{x}^{\alpha^{\prime}} \underline{D}^{\beta^{\prime}}\right)=$ $\delta\left(\underline{x}^{\alpha+\alpha^{\prime}} \underline{D}^{\beta+\beta^{\prime}}\right)$.

Definition 1.3.- An order function $\delta$ on $A_{n}(\mathbf{K})$ is called admissible if, for all non-zero $P \in A_{n}(\mathbf{K})$, we have $\delta(P)=\max \left\{\delta\left(\underline{x}^{\alpha} \underline{D}^{\beta}\right) \mid(\alpha, \beta) \in \mathcal{N}(P)\right\}$.

Proposition 1.4.- Let $\delta: A_{n}(\mathbf{K}) \rightarrow \mathbb{Z} \cup\{-\infty\}$ be an admissible order function. Then the family of $\mathbf{K}$-vector spaces

$$
G_{\delta}^{k}\left(A_{n}(\mathbf{K})\right)=\left\{P \in A_{n}(\mathbf{K}) \mid \delta(P) \leq k\right\}
$$

for $k \in \mathbb{Z}$, is an increassing exhaustive separated filtration of $A_{n}(\mathbf{K})$.
Definition 1.5.- The filtration $G_{\dot{\delta}}^{\bullet}$ will be called the associated filtration to the admissible order function $\delta$, or the $\delta$-filtration. A filtration on $A_{n}(\mathbf{K})$ associated to an admissible order function will be called an admissible filtration.

Proposition 1.6.- Let $\delta: A_{n}(\mathbf{K}) \rightarrow \mathbb{Z} \cup\{-\infty\}$ be an admissible order function. Then the mapping $\Lambda_{\delta}: \mathbb{N}^{2 n} \rightarrow \mathbb{Z}$ defined by $\Lambda_{\delta}(\alpha, \beta)=\delta\left(\underline{x}^{\alpha} \underline{D}^{\beta}\right)$ is the restriction
to $\mathbb{N}^{2 n}$ of a unique linear form on $\mathbb{Q}^{2 n}$, which we will still denote by $\Lambda_{\delta}$, with integer coefficients $\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)$ satisfying $p_{i}+q_{i} \geq 0$ for $1 \leq i \leq n$.

Proof: By 1.2, $\Lambda_{\delta}\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}\right)=\Lambda_{\delta}(\alpha, \beta)+\Lambda_{\delta}\left(\alpha^{\prime}, \beta^{\prime}\right)$ for all $\alpha, \alpha^{\prime}, \beta, \beta^{\prime} \in$ $\mathbb{N}^{n}$. So there exists a unique linear form $\Lambda_{\delta}: \mathbb{Q}^{2 n} \rightarrow \mathbb{Q}$, with integer coefficients $\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)$, such that $\Lambda_{\delta}(\alpha, \beta)=\delta\left(\underline{x}^{\alpha} \underline{D}^{\beta}\right)$ for all $(\alpha, \beta) \in \mathbb{N}^{2 n}$. We have $q_{i}+p_{i}=\delta\left(D_{i} x_{i}\right)=\delta\left(x_{i} D_{i}+1\right)=\max \left\{\delta\left(x_{i} D_{i}\right), \delta(1)\right\}=\max \left\{p_{i}+q_{i}, 0\right\}$ for all $i=1, \ldots, n$.

Proposition 1.7.- Let $\Lambda: \mathbb{Q}^{2 n} \rightarrow \mathbb{Q}$ be a linear form with integer coefficients $\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)$ satisfying $p_{i}+q_{i} \geq 0$ for all $i=1, \ldots, n$. Then there exists a unique admissible order function $\delta_{\Lambda}: A_{n}(\mathbf{K}) \rightarrow \mathbb{Z} \cup\{-\infty\}$ such that $\delta_{\Lambda}\left(\underline{x}^{\alpha} \underline{D}^{\beta}\right)=\Lambda(\alpha, \beta)$ for all $(\alpha, \beta) \in \mathbb{N}^{2 n}$.

Proof: Let us define $\delta_{\Lambda}: A_{n}(\mathbf{K}) \rightarrow \mathbb{Z} \cup\{-\infty\}$ by $\delta_{\Lambda}(0)=-\infty$ and $\delta_{\Lambda}(P)=\max \{\Lambda(\alpha, \beta) \mid(\alpha, \beta) \in \mathcal{N}(P)\}$ for all non-zero $P \in A_{n}(\mathbf{K})$. Then we have:

1. $\delta_{\Lambda}(c)=\Lambda(\underline{0}, \underline{0})=0$ for all $c \in \mathbf{K}, c \neq 0$.
2. $\delta_{\Lambda}(P+Q)=\max \Lambda(\mathcal{N}(P+Q)) \leq \max \Lambda(\mathcal{N}(P) \cup \mathcal{N}(Q))=\max (\Lambda(\mathcal{N}(P)) \cup$ $\Lambda(\mathcal{N}(Q)))=\max \{\max \Lambda(\mathcal{N}(P)), \max \Lambda(\mathcal{N}(Q))\}=\max \left\{\delta_{\Lambda}(P), \delta_{\Lambda}(Q)\right\}$.
3. For all $i, 1 \leq i \leq n$, we have $\delta_{\Lambda}\left(D_{i} x_{i}\right)=\delta_{\Lambda}\left(x_{i} D_{i}+1\right)=\max \left\{p_{i}+q_{i}, 0\right\}=$ $p_{i}+q_{i}=\delta_{\Lambda}\left(D_{i}\right)+\delta_{\Lambda}\left(x_{i}\right)$.

Last property implies that $\delta_{\Lambda}(P Q)=\delta_{\Lambda}(P)+\delta_{\Lambda}(Q)$.
Admissible filtrations cover a wide class of filtrations on the Weyl algebra, as it is showed in the next example.

## Example 1.8.-

1.- The filtration by the order of the differential operators is the associated filtration to the admissible order function $\delta_{\Lambda}$ where $\Lambda(\alpha, \beta)=|\beta|=\beta_{1}+\cdots+\beta_{n}$.
2.- The $V$-filtration of Malgrange-Kashiwara with respect to the hypersurface $x_{n}=0$ is the associated filtration to the admissible order function $\delta_{\Lambda}$ where $\Lambda(\alpha, \beta)=\beta_{n}-\alpha_{n}$.
3.- Let $L: \mathbb{Q}^{2} \rightarrow \mathbb{Q}$ be a linear form with integer coefficients, $L(a, b)=r a+s b$, with $r \geq 0, s \geq 0$ and let us denote by $F_{L}^{\bullet}$ the corresponding L-filtration (see [1]). The L-filtration is the associated filtration to the admissible order function $\delta_{\Lambda}$ where $\Lambda(\alpha, \beta)=-s \alpha_{n}+r \beta_{1}+\cdots+r \beta_{n-1}+(r+s) \beta_{n}$.
4.- For each $k, 1 \leq k \leq n$, let consider $r, r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{k}$ non-negative integers. Let us denote by $\Lambda$ the linear form on $\mathbb{Q}^{2 n}$ defined by $\Lambda(\alpha, \beta)=$ $-s_{1} \alpha_{1}-\cdots-s_{k} \alpha_{k}+\left(r+s_{1}\right) \beta_{1}+\cdots+\left(r+s_{k}\right) \beta_{k}+r \beta_{k+1}+\cdots+r \beta_{n}$. The associated filtration to the admissible order function $\delta_{\Lambda}$ coincides with the filtration associated to a multi-filtration $\mathrm{FV}^{\bullet}$ (see [7]).

Example 1.9.- Let $Y$ be the plane curve $x_{1}^{2}-x_{2}^{3}=0$. The $V$-filtration on $A_{2}(\mathbf{K})$ associated to $Y$ is not an admissible filtration.

Remark 1.10.- Let

$$
\Lambda(\alpha, \beta)=p_{1} \alpha_{1}+\cdots+p_{n} \alpha_{n}+q_{1} \beta_{1}+\cdots+q_{n} \beta_{n}
$$

be a linear form on $\mathbb{Q}^{2 n}$ with integer coefficients and such that $p_{i}+q_{i} \geq 0$ for each $i=1, \ldots, n$. Let $\delta: A_{n}(\mathbf{K}) \rightarrow \mathbb{Z} \cup\{-\infty\}$ the admissible order function associated to $\Lambda$ (see prop. 1.7):

$$
\delta(P)=\max \{\Lambda(\alpha, \beta) \mid(\alpha, \beta) \in \mathcal{N}(P)\}
$$

If $p_{i}+q_{i}>0$ for each $i=1, \ldots, n$, then the graded $\operatorname{ring} \operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right)$ associated to the $\delta$-filtration is commutative. Let us consider the commutative ring of polynomials $\mathbf{K}\left[\chi_{1}, \ldots, \chi_{n}, \xi_{1}, \ldots, \xi_{n}\right]=\mathbf{K}[\underline{\chi}, \underline{\xi}]$ and the $\mathbf{K}$-algebra homomorphism

$$
\phi: \mathbf{K}[\underline{\chi}, \underline{\xi}] \longrightarrow \operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right),
$$

who sends the $\chi_{i}$ (resp. the $\xi_{i}$ ) to the $\sigma_{\delta}\left(x_{i}\right)$ (resp. to the $\sigma_{\delta}\left(D_{i}\right)$ ), where $\sigma_{\delta}$ denote the principal symbol with respect to the $\delta$-filtration. Then $\phi$ is an isomorphism of graded rings, where $\mathbf{K}[\underline{\chi}, \underline{\xi}]$ is graded by

$$
\operatorname{deg}\left(\underline{\chi}^{\alpha} \underline{\xi}^{\beta}\right)=\Lambda(\alpha, \beta)
$$

If $p_{i}+q_{i}>0$ for each $i=1, \ldots, r, r<n$, and $p_{i}+q_{i}=0$ for each $i=r+$ $1, \ldots, n$, then the graded ring $\operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right)$ is non-commutative. Let us consider the commutative polynomial ring $R=\mathbf{K}\left[\chi_{1}, \ldots, \chi_{r}, \xi_{1}, \ldots, \xi_{r}\right]$ and the Weyl algebra of order $n-r$ over $R$

$$
S=R\left[\chi_{r+1}, \ldots, \chi_{n}, \xi_{r+1}, \ldots, \xi_{n}\right]
$$

with relations

$$
\left[\chi_{i}, a\right]=\left[\xi_{i}, a\right]=0, \quad\left[\chi_{i}, \xi_{j}\right]=\delta_{i j}
$$

for all $i, j=r+1, \ldots, n$ and for all $a \in R$. The ring $S$ is graded by

$$
\operatorname{deg}\left(\underline{\chi}^{\alpha} \underline{\xi}^{\beta}\right)=\Lambda(\alpha, \beta)
$$

and there is an isomorphism of graded rings

$$
\phi: S \longrightarrow \operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right)
$$

who sends the $\chi_{i}$ (resp. the $\xi_{i}$ ) to the $\sigma_{\delta}\left(x_{i}\right)$ (resp. to the $\sigma_{\delta}\left(D_{i}\right)$ ).
Remark 1.11.- We can also consider admissible filtrations on the ring

$$
\mathcal{D}_{n}=\mathbb{C}\{\underline{x}\}[\underline{D}]
$$

of the germs at the origin of linear differential operators with holomorphic coefflcients on $\mathbb{C}^{n}$. In this case, admissible order functions $\delta: \mathcal{D}_{n} \rightarrow \mathbb{Z} \cup\{-\infty\}$ come from linear forms $\Lambda: \mathbb{Q}^{2 n} \rightarrow \mathbb{Q}$ with integer coefficients $\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)$ satisfying $p_{i}+q_{i} \geq 0$ and $p_{i} \leq 0$ for all $1 \leq i \leq n$.

## $\S 2 \delta$-exponents and $\delta$-standard bases in $A_{n}(\mathbf{K})$

Let fix a well monomial ordering $\prec$ in $\mathbb{N}^{2 n}$ and let denote by $\leq$ the usual partial ordering in $\mathbb{N}^{2 n}$.
Definition 2.1.- For each admissible order function $\delta: A_{n}(\mathbf{K}) \rightarrow \mathbb{Z} \cup\{-\infty\}$, we define the following monomial ordering in $\mathbb{N}^{2 n}$ :

Remark 2.2.- If the order function $\delta$ takes integer negative values, the ordered set $\left(\mathbb{N}^{2 n}, \prec_{\delta}\right)$ is not well ordered, but the restrictions to the level sets of $(\alpha, \beta)$ such that $\delta\left(\underline{x}^{\alpha} \underline{D}^{\beta}\right)=c$ are well ordered.

From now on $\delta: A_{n}(\mathbf{K}) \rightarrow \mathbb{Z} \cup\{-\infty\}$ will denote an admissible order function.
Definition 2.3.- Given a non-zero element $P \in A_{n}(\mathbf{K})$, we define the $\delta$ exponent of $P$ by $\exp _{\delta}(P)=\max _{\alpha_{\delta}} \mathcal{N}(P)$. We also denote by $c_{\delta}(P)$ the coefficient of the monomial of $P$ corresponding to $\exp _{\delta}(P)$.

We have the following classical lemma:
Lemma 2.4.- Given two non-zero elements $P, Q$ in $A_{n}(\mathbf{K})$ the following properties hold:

1. $\exp _{\delta}(P Q)=\exp _{\delta}(P)+\exp _{\delta}(Q)$.
2. If $\exp _{\delta}(P) \neq \exp _{\delta}(Q)$ then $\exp _{\delta}(P+Q)=\max _{\prec_{\delta}}\left\{\exp _{\delta}(P), \exp _{\delta}(Q)\right\}$.
3. If $\exp _{\delta}(P)=\exp _{\delta}(Q)$ and if $c_{\delta}(P)+c_{\delta}(Q) \neq 0$ then $\exp _{\delta}(P+Q)=\exp _{\delta}(P)$ and $c_{\delta}(P+Q)=c_{\delta}(P)+c_{\delta}(Q)$.
4. If $\exp _{\delta}(P)=\exp _{\delta}(Q)$ and if $c_{\delta}(P)+c_{\delta}(Q)=0$ then $\exp _{\delta}(P+Q) \prec_{\delta}$ $\exp _{\delta}(P)$.

Proof: 1. We can suppose without loss of generality $c_{\delta}(P)=c_{\delta}(Q)=1$. Let us write

$$
\exp _{\delta}(P)=\left(\alpha_{1}, \beta_{1}\right), \quad \exp _{\delta}(Q)=\left(\alpha_{2}, \beta_{2}\right)
$$

and

$$
P=\underline{x}^{\alpha_{1}} \underline{D}^{\beta_{1}}+P^{\prime}, \quad Q=\underline{x}^{\alpha_{2}} \underline{D}^{\beta_{2}}+Q^{\prime} .
$$

We have:

$$
\mathcal{N}(P Q) \subseteq \mathcal{N}\left(\underline{x}^{\alpha_{1}} \underline{D}^{\beta_{1}} \underline{x}^{\alpha_{2}} \underline{D}^{\beta_{2}}\right) \cup \mathcal{N}\left(P^{\prime} \underline{x}^{\alpha_{2}} \underline{D}^{\beta_{2}}\right) \cup \mathcal{N}\left(\underline{x}^{\alpha_{1}} \underline{D}^{\beta_{1}} Q^{\prime}\right) \cup \mathcal{N}\left(P^{\prime} Q^{\prime}\right)
$$

An element of $\mathcal{N}\left(P^{\prime} \underline{x}^{\alpha_{2}} \underline{D}^{\beta_{2}}\right) \cup \mathcal{N}\left(\underline{x}^{\alpha_{1}} \underline{D}^{\beta_{1}} Q^{\prime}\right) \cup \mathcal{N}\left(P^{\prime} Q^{\prime}\right)$ has the form

$$
\left(\alpha+\gamma-\left(\beta-\beta^{\prime}\right), \beta^{\prime}+\varepsilon\right)
$$

with $\beta^{\prime} \leq \beta, \beta-\beta^{\prime} \leq \gamma$ and $(\alpha, \beta) \prec_{\delta}\left(\alpha_{1}, \beta_{1}\right),(\gamma, \varepsilon) \preceq_{\delta}\left(\alpha_{2}, \beta_{2}\right)$ or $(\alpha, \beta) \preceq_{\delta}$ $\left(\alpha_{1}, \beta_{1}\right),(\gamma, \varepsilon) \prec_{\delta}\left(\alpha_{2}, \beta_{2}\right)$. By admissibility

$$
\delta\left(\underline{x}^{\alpha+\gamma-\left(\beta-\beta^{\prime}\right)} \underline{D}^{\beta^{\prime}+\varepsilon}\right) \leq \delta\left(\underline{x}^{\alpha} \underline{D}^{\beta} \underline{x}^{\gamma} \underline{D}^{\varepsilon}\right)=\delta\left(\underline{x}^{\alpha+\gamma} \underline{D}^{\beta+\varepsilon}\right)
$$

and then

$$
\left(\alpha+\gamma-\left(\beta-\beta^{\prime}\right), \beta^{\prime}+\varepsilon\right) \preceq_{\delta}(\alpha, \beta)+(\gamma, \varepsilon) \prec_{\delta}\left(\alpha_{1}, \beta_{1}\right)+\left(\alpha_{2}, \beta_{2}\right) .
$$

Now

$$
\mathcal{N}\left(\underline{x}^{\alpha_{1}} \underline{D}^{\beta_{1}} \underline{x}^{\alpha_{2}} \underline{D}^{\beta_{2}}\right)=\left\{\left(\alpha_{1}+\alpha_{2}-\left(\beta_{1}-\beta^{\prime}\right), \beta^{\prime}+\beta_{2}\right) \mid \beta^{\prime} \leq \beta_{1}, \beta_{1}-\beta^{\prime} \leq \alpha_{2}\right\}
$$

and the monomial $\underline{x}^{\alpha_{1}+\alpha_{2}} \underline{D}^{\beta_{1}+\beta_{2}}$ can not be cancelated. So $\exp _{\delta}(P Q)=\left(\alpha_{1}, \beta_{1}\right)+$ $\left(\alpha_{2}, \beta_{2}\right)$.

The proof of properties 2., 3., 4. is straightforward.
Definition 2.5.- Given a non-zero left ideal I of $A_{n}(\mathbf{K})$, we define

$$
\operatorname{Exp}_{\delta}(I)=\left\{\exp _{\delta}(P) \mid P \in I, P \neq 0\right\}
$$

Definition 2.6.- Given a non-zero left ideal $I$ of $A_{n}(\mathbf{K})$, a $\delta$-standard basis of $I$ is a family $P_{1}, \ldots, P_{r} \in I$ such that

$$
\operatorname{Exp}_{\delta}(I)=\bigcup_{i=1}^{r} \exp _{\delta}\left(P_{i}\right)+\mathbb{N}^{2 n}
$$

Proposition 2.7.- Let I be a non-zero left ideal of $A_{n}(\mathbf{K})$ and let $P_{1}, \ldots, P_{r}$ be a $\delta$-standard basis of $I$. Then $\sigma_{\delta}\left(P_{1}\right), \ldots, \sigma_{\delta}\left(P_{r}\right)$ generate the graded ideal $\operatorname{gr}_{\delta}(I)$.

Proof: We follow the proof of lemma 1.3.3 in [1]. Let $P$ be a non-zero element of $I$. We define inductively a family of elements $P^{(s)}$ of $I$ for $s \geq 0$ :

- $P^{(0)}:=P$,
- $P^{(s+1)}:=P^{(s)}-\frac{c_{\delta}\left(P^{(s)}\right)}{c_{\delta}\left(P_{i_{s}}\right)} \underline{x}^{\alpha^{s}} \underline{D}^{\beta^{s}} P_{i_{s}}$, where $\left(\alpha^{s}, \beta^{s}\right)$ is an element of $\mathbb{N}^{2 n}$ such that $\left(\alpha^{s}, \beta^{s}\right)+\exp _{\delta}\left(P_{i_{s}}\right)=\exp _{\delta}\left(P^{(s)}\right)$,
- $\delta\left(P^{(s+1)}\right) \leq \delta\left(P^{(s)}\right)$ and $\exp _{\delta}\left(P^{(s+1)}\right) \prec_{\delta} \exp _{\delta}\left(P^{(s)}\right)$.

By the remark 2.2, there is an $s$ such that $\delta\left(P^{(s+1)}\right)<\delta\left(P^{(s)}\right)$. Let $s$ be the smallest integer having this property. Then

$$
\sigma_{\delta}(P)=\sum_{j=0}^{s} \sigma_{\delta}\left(\frac{c_{\delta}\left(P^{(j)}\right)}{c_{\delta}\left(P_{i_{j}}\right)} \underline{x}^{\alpha^{j}} \underline{D}^{\beta^{j}}\right) \sigma_{\delta}\left(P_{i_{j}}\right) .
$$

EXAMPLE 2.8.- In general, a $\delta$-standard basis of an ideal $I \subseteq A_{n}(\mathbf{K})$ is not a system of generators of $I$. For example, take the admissible order function defined by

$$
\delta\left(\underline{x}^{\alpha} \underline{D}^{\beta}\right)=\beta_{n}-\alpha_{n}
$$

associated to the $V$-filtration with respect to $x_{n}=0$, and take $I=A_{n}(\mathbf{K}), P=$ $1+x_{n}^{2} D_{n}$. It is clear that $\sigma_{\delta}(P)=1$ and then $P$ is a $\delta$-standard basis of $I$, but obviously $P$ does not generate $I=A_{n}(\mathbf{K})$ ( $P$ is not a unit).

Remark 2.9.- Using the isomorphisms $\phi$ of remark 1.10, one can define, in the obvious way, the Newton diagram $\mathcal{N}(H)$ for each non-zero element $H \in$ $\operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right)$, and so the $\delta$-exponent $\exp _{\delta}(H) \in \mathbb{N}^{2 n}$, the set $\operatorname{Exp}_{\delta}(J) \subseteq \mathbb{N}^{2 n}$ for each non-zero left ideal $J \subseteq \operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right)$ and the notion of $\delta$-standard basis for a such $J$.
If $H$ is a non-zero homogeneous element in $\operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right)$, then the exponent of $H$ with respect to $\prec, \exp _{\prec}(H)$, coincides with $\exp _{\delta}(H)$, and for each non-zero $P \in A_{n}(\mathbf{K})$ we have

$$
\exp _{\delta}(P)=\exp _{\prec}\left(\sigma_{\delta}(P)\right)
$$

In fact, the notions of $\delta$-standard basis and of $\prec$-standard basis for a non-zero homogeneous left ideal of $\operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right)$ coincide.
One can show easily that, for a non-zero left ideal $I \subseteq A_{n}(\mathbf{K})$, a family of elements $P_{1}, \ldots, P_{r} \in I$ is a $\delta$-standard basis of I if and only if $\sigma_{\delta}\left(P_{1}\right), \ldots, \sigma_{\delta}\left(P_{r}\right)$ is a $\prec-$ standard basis of $\operatorname{gr}_{\delta}(I)$.
As in [3], we have a division algorithm in $\operatorname{gr}_{\delta}\left(A_{n}(\mathbf{K})\right)$ with respect to the well ordering $\prec$. As a consequence, a $\prec$-standard basis of $\operatorname{gr}_{\delta}(I)$ is a system of generators of this ideal. This precises the proposition 2.7.

## §3 Homogenisation

In this section we denote by $A_{n}$ the Weyl algebra $A_{n}(\mathbf{K})$. Let $A_{n}[t]$ denote the algebra

$$
A_{n}[t]=\mathbf{K}[t, \underline{x}][\underline{D}]=\mathbf{K}\left[t, x_{1}, \ldots, x_{n}\right]\left[D_{1}, \ldots, D_{n}\right]
$$

with relations

$$
\left[t, x_{i}\right]=\left[t, D_{i}\right]=\left[x_{i}, x_{j}\right]=\left[D_{i}, D_{j}\right]=0,\left[D_{i}, x_{j}\right]=\delta_{i j} t^{2}
$$

The algebra $A_{n}[t]$ is graded, the degree of the monomial $t^{k} \underline{x}^{\alpha} \underline{D}^{\beta}$ being $k+|\alpha|+|\beta|$.
Lemma 3.1.- The $\mathbf{K}$-algebra $A_{n}[t]$ is isomorphic to the Rees algebra associated to the Bernstein filtration of $A_{n}$. The algebra $\mathbf{K}[t]$ is central in $A_{n}[t]$ and the quotient algebra $A_{n}[t] /\langle t-1\rangle$ is isomorphic to $A_{n}$.

Proof: Let $B^{\bullet}$ be the Bernstein filtration of $A_{n}$. We have, for each $m \in \mathbb{N}$,

$$
B^{m}\left(A_{n}\right)=\left\{\sum_{|\alpha|+|\beta| \leq m} p_{\alpha, \beta} \underline{x}^{\alpha} \underline{D}^{\beta} \mid p_{\alpha, \beta} \in \mathbf{K}\right\} .
$$

Let

$$
\mathcal{R}\left(A_{n}\right)=\bigoplus_{m \geq 0} B^{m}\left(A_{n}\right) \cdot u^{m}
$$

be the Rees algebra of $A_{n}$. We observe that the K-linear map $\phi: A_{n}[t] \rightarrow \mathcal{R}\left(A_{n}\right)$ defined by

$$
\phi(t)=u, \phi\left(x_{i}\right)=x_{i} \cdot u, \phi\left(D_{i}\right)=D_{i} \cdot u
$$

is an isomorphism of graded algebras.
Given $P=\sum_{\alpha, \beta} p_{\alpha, \beta} \underline{x}^{\alpha} \underline{D}^{\beta}$ in $A_{n}$ we denote by $\operatorname{ord}^{T}(P)$ its total order

$$
\operatorname{ord}^{T}(P)=\max \left\{|\alpha|+|\beta| \mid p_{\alpha, \beta} \neq 0\right\} .
$$

Definition 3.2.- Let $P=\sum_{\alpha, \beta} p_{\alpha, \beta} \underline{x}^{\alpha} \underline{D}^{\beta} \in A_{n}$. Then, the differential operator

$$
h(P)=\sum_{\alpha, \beta} p_{\alpha, \beta} t^{\operatorname{ord}^{T}(P)-|\alpha|-|\beta|} \underline{x}^{\alpha} \underline{D}^{\beta} \in A_{n}[t]
$$

is called the homogenisation of $P$. If $H=\sum_{k, \alpha, \beta} h_{k, \alpha, \beta} t^{k} \underline{x}^{\alpha} \underline{D}^{\beta}$ is an element of $A_{n}[t]$ we denote by $H_{\mid t=1}$ the element of $A_{n}$ defined by $H_{\mid t=1}=\sum_{k, \alpha, \beta} h_{k, \alpha, \beta} \underline{x}^{\alpha} \underline{D}^{\beta}$.

Lemma 3.3.- For $P, Q \in A_{n}[t]$ we have:

1. $h(P Q)=h(P) h(Q)$.
2. There exist $k, l, m \in \mathbb{N}$ such that $t^{k} h(P+Q)=t^{l} h(P)+t^{m} h(Q)$.

For any homogeneous element $H \in A_{n}[t]$ there exists $k \in \mathbb{N}$ such that $t^{k} h\left(H_{\mid t=1}\right)=$ $H$.

Proof: 1. We have

$$
h\left(D_{i} x_{i}\right)=h\left(x_{i} D_{i}+1\right)=x_{i} D_{i}+t^{2}=D_{i} x_{i}=h\left(D_{i}\right) h\left(x_{i}\right), \quad i=1, \ldots, n .
$$

From this we obtain easily 1 .. To prove 2. let us denote $b=\operatorname{ord}^{T}(P), c=$ $\operatorname{ord}^{T}(Q), d=\operatorname{ord}^{T}(P+Q)$ and $e=\max \{b, c\}$. We have: $t^{e-d} h(P+Q)=$ $t^{e-b} h(P)+t^{e-c} h(Q)$.

Let $H$ be a non-zero homogeneous element in $A_{n}[t]$. Let $k$ be the greatest integer such that $t^{k}$ divides $H$. There exists a homogeneous element $G \in A_{n}[t]$ such that $H=t^{k} G$ and such that the degree of $G$ is equal to $\operatorname{ord}^{T}\left(G_{\mid t=1}\right)$. We have $H_{\mid t=1}=G_{\mid t=1}$ and $t^{k} h\left(G_{\mid t=1}\right)=t^{k} G=H$.

Let fix a well monomial ordering $\prec$ in $\mathbb{N}^{2 n}$ and an admissible order function $\delta: A_{n} \rightarrow \mathbb{Z} \cup\{-\infty\}$.

We consider on $\mathbb{N}^{2 n+1}$ the following total ordering, denoted by $\prec_{\delta}^{h}$, which is a well monomial ordering:

$$
(k, \alpha, \beta) \prec_{\delta}^{h}\left(k^{\prime}, \alpha^{\prime}, \beta^{\prime}\right) \Longleftrightarrow\left\{\begin{array}{l}
k+|\alpha|+|\beta|<k^{\prime}+\left|\alpha^{\prime}\right|+\left|\beta^{\prime}\right| \\
\text { or }\left\{\begin{array}{l}
k+|\alpha|+|\beta|=k^{\prime}+\left|\alpha^{\prime}\right|+\left|\beta^{\prime}\right| \text { and } \\
(\alpha, \beta) \prec_{\delta}\left(\alpha^{\prime}, \beta^{\prime}\right)
\end{array}\right.
\end{array}\right.
$$

Definition 3.4.- Let $H=\sum_{k, \alpha, \beta} h_{k, \alpha, \beta} t^{k} \underline{x}^{\alpha} \underline{D}^{\beta} \in A_{n}[t]$. As in $\S 1$ we denote by $\mathcal{N}(H)$ the Newton diagram of $H$ :

$$
\mathcal{N}(H)=\left\{(k, \alpha, \beta) \in \mathbb{N}^{2 n+1} \mid h_{k, \alpha, \beta} \neq 0\right\}
$$

Definition 3.5.- Given a non-zero element $H \in A_{n}[t]$ we define the $\delta$-exponent of $H$ by $\exp _{\delta}(H)=\max _{\chi_{\delta}^{h}} \mathcal{N}(H)$. We also denote by $c_{\delta}(H)$ the coefficient of the monomial of $H$ corresponding to $\exp _{\delta}(H)$. We write $\exp (H)$ and $c(H)$ when no confusion is possible. If $J$ is a non-zero left ideal of $A_{n}[t]$ we denote by $\operatorname{Exp}_{\delta}(J)$ the set $\left\{\exp _{\delta}(H) \mid H \in J, H \neq 0\right\}$.

Lemma 3.6.- Properties $1-4$ from lemma 2.4 hold for $\delta$-exponents of elements in $A_{n}[t]$. Furthermore, if $P \in A_{n}$ then $\pi\left(\exp _{\delta}(h(P))\right)=\exp _{\delta}(P)$, where $\pi: \mathbb{N}^{2 n+1}=$ $\mathbb{N} \times \mathbb{N}^{2 n} \rightarrow \mathbb{N}^{2 n}$ is the natural projection, and more generally, if $H \in A_{n}[t]$ is homogeneous then $\pi\left(\exp _{\delta}(H)\right)=\pi\left(\exp _{\delta}\left(h\left(H_{\mid t=1}\right)\right)\right)=\exp _{\delta}\left(H_{\mid t=1}\right)$.

Proof: The proof of the first part is similar to that of lemma 2.4. Last property follows from lemma 3.3.

Theorem 3.7.- Let $\left(P_{1}, \ldots, P_{r}\right)$ be in $A_{n}[t]^{r}$. Let us denote by

$$
\begin{aligned}
\Delta_{1} & :=\exp \left(P_{1}\right)+\mathbb{N}^{2 n+1} \\
\Delta_{i} & :=\left(\exp \left(P_{i}\right)+\mathbb{N}^{2 n+1}\right) \backslash \bigcup_{j=1}^{i-1} \Delta_{j}, i=2, \ldots, r \\
\bar{\Delta} & :=\mathbb{N}^{2 n+1} \backslash \bigcup_{i=1}^{r} \Delta_{i}=\mathbb{N}^{2 n+1} \backslash \bigcup_{i=1}^{r}\left(\exp \left(P_{i}\right)+\mathbb{N}^{2 n+1}\right)
\end{aligned}
$$

Then, for any $H \in A_{n}[t]$ there exists a unique element $\left(Q_{1}, \ldots, Q_{r}, R\right)$ in $A_{n}[t]^{r+1}$ such that:

1. $H=Q_{1} P_{1}+\cdots+Q_{r} P_{r}+R$.
2. $\exp \left(P_{i}\right)+\mathcal{N}\left(Q_{i}\right) \subseteq \Delta_{i}$ for $1 \leq i \leq r$.
3. $\mathcal{N}(R) \subseteq \bar{\Delta}$.

Proof: The proof is the same as in [3] since $\prec_{\delta}^{h}$ is a well monomial ordering.

Lemma 3.8.- Let I be a non-zero left ideal of $A_{n}$. We denote by $h(I)$ the homogenized ideal of $I$, i.e. $h(I)$ is the homogeneous left ideal of $A_{n}[t]$ generated by the set $\{h(P) \mid P \in I\}$. Then:

1. $\pi\left(\operatorname{Exp}_{\delta}(h(I))\right)=\operatorname{Exp}_{\delta}(I)$.
2. Let $\left\{P_{1}, \ldots, P_{m}\right\}$ be a system of generators of $I$. Let $\tilde{I}$ be the left ideal of $A_{n}[t]$ generated by $\left\{h\left(P_{1}\right), \ldots, h\left(P_{m}\right)\right\}$. Then $\pi\left(\operatorname{Exp}_{\delta}(\widetilde{I})\right)=\operatorname{Exp}_{\delta}(I)$.

Proof: 1. Let $P$ be a non-zero element of $I$. Then the equality $\exp _{\delta}(P)=$ $\pi\left(\exp _{\delta}(h(P))\right)$ shows that $\operatorname{Exp}_{\delta}(I) \subseteq \pi\left(\operatorname{Exp}_{\delta}(h(I))\right)$. Let $H$ a non-zero element of the homogeneous ideal $h(I)$. We can suppose $H$ homogeneous. There exist $B_{1}, \ldots, B_{m} \in A_{n}[t]$ and $P_{1}, \ldots, P_{m} \in I$ such that $H=\sum_{i} B_{i} h\left(P_{i}\right)$. Then, $H_{\mid t=1}=$ $\sum_{i} B_{i \mid t=1} P_{i}$ belong to the ideal $I$. The inclusion $\pi\left(\operatorname{Exp}_{\delta}(h(I))\right) \subseteq \operatorname{Exp}_{\delta}(I)$ follows from 3.6.
2. Write $P=\sum_{i} C_{i} P_{i} \in I$, where $C_{i} \in A_{n}$. From lemma 3.3 there exists $k \in \mathbb{N}$ such that $t^{k} h(P) \in \widetilde{I}$. The equality $\exp _{\delta}(P)=\pi\left(\exp _{\delta}\left(t^{k} h(P)\right)\right)$ shows that $\operatorname{Exp}_{\delta}(I) \subseteq \operatorname{Exp}_{\delta}(\widetilde{I})$. Finally, $\widetilde{I} \subseteq h(I)$ implies $\operatorname{Exp}_{\delta}(\widetilde{I}) \subseteq \operatorname{Exp}_{\delta}(h(I))=\operatorname{Exp}_{\delta}(I)$.

Let $H_{1}, H_{2}$ be elements of $A_{n}[t]$. Let us denote $\exp \left(H_{i}\right)=\left(k_{i}, \alpha_{i}, \beta_{i}\right)$ and $(k, \alpha, \beta)=$ l.c.m. $\left\{\left(k_{1}, \alpha_{1}, \beta_{1}\right),\left(k_{2}, \alpha_{2}, \beta_{2}\right)\right\}$. There exists $\left(l_{i}, \gamma_{i}, \delta_{i}\right)$, for $i=1,2$, such that $(k, \alpha, \beta)=\left(k_{1}, \alpha_{1}, \beta_{1}\right)+\left(l_{1}, \gamma_{1}, \delta_{1}\right)=\left(k_{2}, \alpha_{2}, \beta_{2}\right)+\left(l_{2}, \gamma_{2}, \delta_{2}\right)$.
Definition 3.9.- The operator

$$
S\left(H_{1}, H_{2}\right)=c\left(H_{2}\right) t^{l_{1}} x^{\gamma_{1}} \underline{D}^{\delta_{1}} H_{1}-c\left(H_{1}\right) t^{l_{2}} x^{\gamma_{2}} \underline{D}^{\delta_{2}} H_{2}
$$

is called the semisyzygy relative to $\left(H_{1}, H_{2}\right)$.
Theorem 3.10.- Let $\mathcal{F}=\left\{P_{1}, \ldots, P_{r}\right\}$ be a system of generators of a left ideal $J$ of $A_{n}[t]$ such that, for any $(i, j)$, the remainder of the division of $S\left(P_{i}, P_{j}\right)$ by $\left(P_{1}, \ldots, P_{r}\right)$ is equal to zero. Then $\mathcal{F}$ is a $\delta$-standard basis of $J$.

Proof: This theorem is analogous to Buchberger's criterium for polynomials [2]. For example, the proof of [6, Th. 3.3, Chap. 1] can be formally adapted to our case.

The preceeding theorem gives an algorithm in order to calculate a $\delta$-standard basis of an ideal $I$ of $A_{n}(\mathbf{K})$ starting from a system of generators: let $\mathcal{F}=$ $\left\{P_{1}, \ldots, P_{r}\right\}$ be a system of generators of this ideal. We can calculate a $\delta$ standard basis, say $\mathcal{G}=\left\{G_{1}, \ldots, G_{s}\right\}$, of the ideal $J=\widetilde{I}$ of $A_{n}[t]$, generated by $\left\{h\left(P_{1}\right), \ldots, h\left(P_{r}\right)\right\}$. From 3.8 we have $\pi\left(\operatorname{Exp}_{\delta}(\widetilde{I})\right)=\operatorname{Exp}_{\delta}(I)$ and then, by 3.6, $\left\{G_{1 \mid t=1}, \ldots, G_{s \mid t=1}\right\}$ is a $\delta$-standard basis of $I$. Finally, by proposition 2.7, $\left\{\sigma_{\delta}\left(G_{1 \mid t=1}\right), \ldots, \sigma_{\delta}\left(G_{s \mid t=1}\right)\right\}$ is a system of generators of $\operatorname{gr}_{\delta}(I)$.

## References

[1] A. Assi, F. Castro-Jiménez, and J.M. Granger. How to calculate the slopes of a $\mathcal{D}$-module. Comp. Math., 104:107-123, 1996.
[2] B. Buchberger. Ein algoritmisches Kriterium for die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math., 4:374-383, 1970.
[3] F. Castro. Calcul de la dimension et des multiplicités d'un D-module monogène. C. R. Acad. Sci. Paris Sér. I Math., 302:487-490, 1986.
[4] Y. Laurent. Polygone de Newton et $b$-fonctions pour les modules microdifférentiels. Ann. Scient. Ec. Norm. Sup., 20:391-441, 1987.
[5] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In Proc. of Eurocal 83, volume 162 of Lect. Notes in Comp. Sci., pages 146-156, 1983.
[6] M. Lejeune-Jalabert. Effectivité des calculs polynomiaux. Cours D.E.A., Université Grenoble I, 1984-85.
[7] C. Sabbah. Equations différentielles à points singuliers irréguliers en dimension 2. Ann. Inst. Fourier, Grenoble, 43:1619-1688, 1993.


[^0]:    *Supported by DGICYT PB94-1435.

