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Abstract. V.Ortiz established in [10] the existence of a canoni-
cal decomposition of ideals in a commutative noetherian ring. In
this paper we study the canonical decomposition of ideals in a
polynomial ring and we give an algorithmic procedure to compute
canonical decompositions.

1. Preliminaries

Let S := k[x1, . . . , xn] be the polynomial ring in n variables over a
field k.

Definition 1.1. Given an ideal I in S, there exists an integer e such
that (√

I
)e

⊆ I.

The index or degree of nilpotency nil(I) of an ideal I in S is the smallest
such integer e. In some texts the index of nilpotency is also called the
exponent of I.

It is well known that the primary decomposition of an ideal is not
uniquely determined. However, it is possible to give a primary decom-
position uniqueness theorem.

Theorem 1.2. [10] Every ideal I in a commutative noetherian ring
admits a unique minimal primary decomposition:

I = Q∗1 ∩Q∗2 ∩ . . . ∩Q∗t ,

such that if

I = Q1 ∩Q2 ∩ . . . ∩Qt

is another minimal primary decomposition of I, then we have

(a) nil(Q∗i ) ≤ nil(Qi), i = 1, . . . , t;
(b) If nil(Q∗i ) = nil(Qi), then Q∗i ⊆ Qi, i = 1, . . . , t.
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The primary ideals Q∗i are called canonical components and Q∗1∩Q∗2∩
. . . ∩Q∗t , is called the canonical decomposition of I.

The following theorem provides a characterization of the canonical
components of a given ideal in a commutative noetherian ring.

Notation 1.3. We write Hull(I) for the intersection of the minimal
primary components of an ideal I.

Theorem 1.4. [10] Let I be an ideal in a commutative noetherian ring.
If P is an associated prime of I and Q∗ is the canonical P -component
of I, then

Q∗ = Hull
(
I + P nil(Q∗)

)
.

In J.Gago’s PhD Thesis [6] it can find an application of the canonical
decomposition in the classification of finitely generated modules.

2. Canonical Decomposition of Polynomial Ideals

Next theorem is an effective version from the primary decomposition
given in [3].

Theorem 2.1. If I is an in S, then it can be computed effectively a
set of integers {qP | P ∈ Ass(S/I)} such that

I =
⋂

P∈Ass(S/I)

Hull (I + P qP )

is a minimal primary decomposition.

Proof. Let I =
⋂

P∈Ass(S/I) QP be minimal primary decomposition and

let P =
√

QP . Since there are bounds for the index of nilpotency of
polynomial ideals (see [1, 7, 5, 9], we can compute effectively a positive
integer qP such that qP ≥ nil(QP ), then we have I + P qP ⊆ QP , for
each P ∈ Ass(S/I). Thus, by localization in P, we obtain that

I ⊆ Hull (I + P qP ) ⊆ Hull(QP ) = QP

and that Hull (I + P qP ) is primary, for every P ∈ Ass(S/I).
Putting this together, it can be easily deduced that

I =
⋂

P∈Ass(S/I)

Hull (I + P qP )

is a minimal primary decomposition.

D.Eisenbud and B.Sturmfels showed in [4] that, over an algebraically
closed field, there exist binomial primary decompositions of binomial
ideals. The algorithms in [4] has been completed in [8].

The main results in [8] are summarized in the following theorem.
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Notation 2.2. If q is a positive integer, then we write I [q] for the q-th
Fröbenius power of I.

Theorem 2.3. Assume k algebraically closed. If I is a binomial ideal
in S, then it can be computed effectively a set of integers {q′P | P ∈
Ass(S/I)} such that

I =
⋂

P∈Ass(S/I)

Hull
(
I + P [q′P ]

)
(1)

is a minimal primary decomposition into binomial ideals.

In [9] it is given an algorithmic procedure to compute implicit bounds
for the index of nilpotency for binomial ideals which in many cases are
much better than the older ones.

Thus, in Theorem 2.1, when I is a binomial ideal in S with k alge-
braically closed we can use theorem above to obtain a binomial primary
decomposition to start with and compute the index of nilpotency of the
primary components using the bounds in [9].

Unfortunately, the canonical decomposition of binomial ideals is not
always binomial.

Example 2.4. Consider the binomial ideal I = (x2, x(y−1)) in k[x, y].
It is easy to see that (x) ∩ (x2, x(y − 1), (y − 1)2) is the canonical
decomposition of I which is not binomial when char(k) 6= 2.

Returning to the general case, the next theorem assures the correct-
ness of our algorithm.

Theorem 2.5. Let I be an ideal in S and let I =
⋂t

i=1 Hull (I + P qi

i )
be a minimal primary decomposition. If I is not equal to(

j−1⋂
i=1

Hull (I + P qi

i )

)
∩
(
I + P

qj−1
j

)
∩

(
t⋂

i=j+1

Hull (I + P qi

i )

)

then Hull
(
I + P

qj

j

)
is the canonical Pj-component of I, for each j =

1, . . . , t.

Proof. First of all it is convenient to recall that, by Theorems 1.2 and

1.4, if Hull
(
I + P

q∗i
i

)
is the canonical Pi-component, then q∗i ≤ qi and,

consequently,

I ⊆ Hull (I + P qi

i ) ⊆ Hull
(
I + P

q∗i
i

)
,(2)

for every i = 1, . . . , t.
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And now, we will prove the theorem for j = 1. If q∗1 = q1 there is
nothing to prove. Otherwise q∗1 < q1 and, in this case,

I ⊆ Hull
(
I + P q1−1

1

)
⊆ Hull

(
I + P

q′1
1

)
.(3)

From formulas (2) and (3) it follows

I = Hull
(
I + P q1−1

1

)
∩

(
t⋂

i=2

Hull (I + P qi

i )

)
and then

I =
(
I + P q1−1

1

)
∩

(
t⋂

i=2

Hull (I + P qi

i )

)
,

because I ⊆ I + P q1−1
1 ⊆ Hull

(
I + P q1−1

1

)
.

Finally, we present the algorithm to compute the canonical decom-
position of polynomial ideals.

Algorithm 2.6. Canonical decomposition.
Input: An ideal I 6= (1) in S.
Output: The canonical decomposition of I.

1. If I is primary then output I.
2. Otherwise, compute a set of positive integers {qP | P ∈ Ass(S/I)}

such that I =
⋂

P∈Ass(S/I) Hull(I + P qP ) is a minimal primary
decomposition.

3. For each P ′ ∈ Ass(S/I) :
3.1 Set e := qP ′ .
3.2 Set J := I + (P ′)e−1.

3.3 If I 6= J ∩
(⋂

P∈Ass(S/I)\P ′ Hull(I + P qP )
)

, then define Q∗P ′ :=

Hull(I + (P ′)e).
3.4 Otherwise, return to Step 3.2 with e = e− 1.

4. Output {Q∗P | P ∈ Ass(S/I)}.

Comments. In order to check Step 1, one can use the results in [11]
or Algorithm 9.4 in [4] in the binomial case. The set of integers in
Step 2 can be computed running the algorithms in [11] (in [8] when
I is binomial and k algebraically closed, resp.) and using the bounds
in [1, 7, 5] (in [9], resp.). The computation of Hull(−), in Step 3.3,
it can be done using localization or primary decomposition procedures
(see [11]); for binomial ideals, Algorithm 9.6 in [4] (completed with the
algorithms in [8]) can be used.
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3. An example

The family of ideals used in the following example is taken from [2].
Primary Decompositions of these ideals give useful descriptions of com-
ponents of a graph arising in problems from combinatorics, statistics,
and operations research.

Let IL be the prime ideal generated by all 2× 2-minors of
x11 x12 . . . x1b

x21 x22 . . . x2b
...

...
. . .

...
xa1 xa2 . . . xab


in S = k[{xij}], where a, b ≥ 3. Let R := (x11, . . . , x1b) and C :=
(x11, . . . , xa1). In [2], it is shown that the ideal of corner minors IBcor :=
({x11xij − x1jxi1 | 2 ≤ i ≤ a, 2 ≤ j ≤ b}) has the minimal primary
decomposition

IBcor = IL ∩R ∩ C ∩
(
IBcor + R2 + C2

)
.

In what follows we use the notation Q := IBcor + R2 + C2.
The ideals IL, R and C are prime, thus we can already assure that

they are canonical components. On the other hand, the radical of the
primary ideal Q is R + C.

We shall prove that

IBcor = IL ∩R ∩ C ∩ Hull
(
IBcor + (R + C)3

)
(4)

is the canonical decomposition.
We first show that nil(Q) ≤ 3. To see that, it suffices to check that

(R + C)3 ⊆ R2 + C2 ⊆ Q. Moreover, this implies that (4) is a minimal
primary decomposition.

Note that x12x21 ∈ (R+C)2 does not lie in Q. So we can assure that
nil(Q) = 3.

We next prove

IL ∩R ∩ C ⊆ IBcor + (R + C)2.(5)

Let f ∈ IL ∩ R ∩ C. Since IL is a binomial ideal not containing any
monomial, the by Corollary 1.5 in [4], we can suppose f homogeneous
of degree at least 2, that is, f = m1−m2 with deg(m1) = deg(m2) ≥ 2.
On the other hand, since C is a monomial ideal and f ∈ C, the terms
m1, m2 lie in C, thus we can write m1 = xi11m11 and m2 = xi21m12, with
deg(m11), deg(m12) ≥ 1; by the same argument on R, we have m1 =
x1j1m21 and m2 = x1j2m22, with deg(m21), deg(m22) ≥ 1. Therefore,
either m1 = x11m11 = x11m21 or m1 = xi11x1j1m31, with i1 and j1 not
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simultaneously equal 1. If m1 = x11m11, then

x11m11 = x11xklm31 = (x11xkl−xk1x1l)m31+xk1x1lm31 ∈ IBcor+(R+C)2,

otherwise m1 ∈ (R+C)2. In any case, m1 ∈ IBcor + (R+C)2. Similarly,
one can prove m2 ∈ IBcor + (R + C)2. Therefore, f = m1 − m2 ∈
IBcor + (R + C)2, as desired.

By (5), we can assure that I is strictly contained in IL ∩ R ∩ C ∩
(IBcor + (R + C)2) . Thus, by Theorem 2.5, it follows that (4) is the
canonical decomposition, as claimed.

Using the improved version of Algorithm 9.6 in [4] given in [8], we
have computed Hull (IBcor + (R + C)3) . In such a way we obtain that

IBcor = IL ∩R ∩ C ∩

((
IBcor + (R + C)3

)
:

(∏
i,j 6=1

xij

)∞)
is the canonical decomposition which, in this case, is binomial.
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