Kirchhoff-Boussinesq type problems with positive and zero mass

Romulo Díaz Carlos, Giovany M. Figuereido and Ricardo Ruviario ${ }^{14}$

In this presentation we will treat the question existence of solution for the following class of elliptic Kirchhoff-Boussinesq type problems given by

$$
\Delta^{2} u-\Delta_{p} u+u=h(u) \quad \text { in } \mathbb{R}^{N} \quad \text { and } \quad \Delta^{2} u-\Delta_{p} u=f(u) \text { in } \mathbb{R}^{N}
$$

where $2<p \leq \frac{2 N}{N-2}$ for $N \geq 3$ and $2_{* *}=\infty$ for $N=3, N=4,2_{* *}=\frac{2 N}{N-4}$ for $N \geq 5$ and h and f are continuous functions that satisfy hypotheses considered by Berestycki and Lions in [2]. More precisely, the problem with the nonlinearity h is related to Positive mass case and the problem with the nonlinearity f is related to Zero mass case. The main argument is to find a Palais-Smale sequence satisfying a property related to Pohozaev identity, as in [4], which was used for the first time by [6], for more details you can see [3].

References

[1] Ambrosio, V. Zero mass case for a fractional Berestycki-Lions-type problem Advances in Nonlinear Analysis, 7 (3), 365-374 (2018).
[2] Berestycki, H. and Lions, P.L. Nonlinear Scalar Field equations, I existence of a ground state Arch. Rational Mech. Anal., 82, 313-345 (1983).
[3] Carlos, R. D., Figueiredo, G. M. and Ruviaro, R. Kirchhoff-Boussinesq-type problems with positive and zero mass Applicable Analysis, (2023).
[4] Hirata, J., Ikoma, N. and Tanaka, K. Nonlinear scalar field equations in R-N: mountain pass and symmetric mountain pass approaches Topol. Methods Nonlinear Anal., 35 (2) 253-276 (2010).
[5] Hu, D. and Zhang, Q. Existence ground state solutions for a quasilinear Schrödinger equation with Hardy potential and Berestycki-Lions type conditions Appl. Math. Lett., 123, Paper No. 107615 (2022).
[6] Jeanjean, L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^{N} Proc. Roy. Soc. Edinburgh Sect. A, 129 (4), 787-809 (1999).

[^0]
[^0]: ${ }^{14}$ Departamento de Matemática, Universidade de Brasília, Brazil.

