Ulysseus Spring School in PDEs - USSPDE Universidad de Sevilla and Université Côte d'Azur Seville, June 12-16, 2023

Continuum of solutions from a continuation theorem on open sets

VINICIUS KOBAYASHI RAMOS, CARLOS ALBERTO SANTOS AND WILLIAN CINTRA¹⁸

In this poster we will present a result that provides the existence of a continuum of positive solutions (λ, u) of $u = K(\lambda, u)$, emanating from a point (λ_0, u_0) with non zero Leray Schauder Index, where K is a compact operator defined on $\overline{\mathcal{U}}$, \mathcal{U} is an open subset of $\mathbb{R} \times E$ (E Banach space) and u_0 is an isolated solution of $u = K(\lambda_0, u)$. The result is an improvement of Theorem 2.2 of [1] which requires the set of solutions for $\lambda = \lambda_0$ to be unitary and $\mathcal{U} = \mathbb{R} \times E$. By applying the result for $\lambda_0 = 0$ and an appropriated \mathcal{U} , we prove that the problem

$$\begin{cases} -\Delta u - \lambda u \Delta(u^2) = \mu u - u^p & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

with $\mu > \lambda_1$ and p > 1, admits a positive solution for each $\lambda > -1/(2\mu^{\frac{2}{p-1}})$. Also we prove some existence and qualitative information about positive solutions of a Kirchhoff-Carriertype problem.

References

- ARCOYA, D., DE COSTER, C., JEANJEAN, L. AND TANAKA, K., Continuum of solutions for an elliptic problem with critical growth in the gradient. *Journal Of Functional Analysis*, 268 (8), 2298–2335 (2015).
- [2] FERNÁNDEZ-RINCÓN, S. AND LÓPEZ-GÓMEZ, J., The singular perturbation problem for a class of generalized logistic equations under non-classical mixed boundary conditions. Advanced Nonlinear Studies, 19 (1), 1–27 (2019).
- [3] AMANN, H. AND CRANDALL, M. G., On some existence theorems for semi-linear elliptic equations. *Indiana University Mathematics Journal*, 27 (5), 779–790 (1978).
- [4] RABINOWITZ, P. A., Global theorem for nonlinear eigenvalue problems and applications. Contributions To Nonlinear Functional Analysis, 11–36 (1971).

 $^{^{18}\}mbox{Departamento}$ de Matemática, Universidade de Brasília