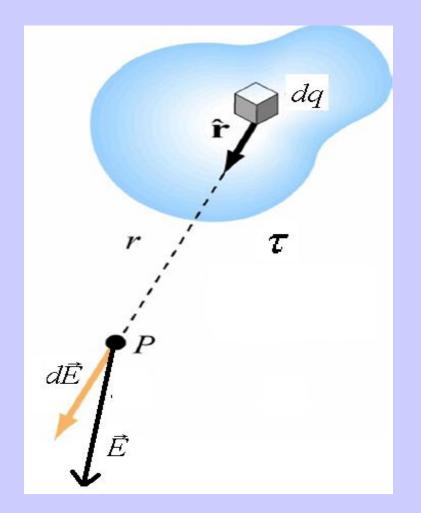

Tema 1-3. Distribuciones continuas de carga eléctrica

- Distribuciones continuas de carga
- Diferencial de carga
- Campo creado por una distribución continua de carga
- Distribución de carga en volumen
- Distribución superficial de carga
- Distribución lineal de carga
- Campo creado por un plano infinito cargado

Distribuciones continuas de carga

Dividir la distribución en elementos $\Delta q \rightarrow dq$:

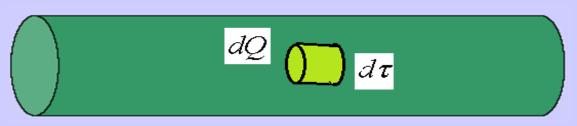
$$Q = \sum_{i} \Delta q_{i} \to \int_{\tau} dq$$


Campo \vec{E} en P debido a Δq

$$\Delta \vec{E} = k_e \, \frac{\Delta q}{r^2} \, \hat{r} \longrightarrow d\vec{E} = k_e \, \frac{dq}{r^2} \, \hat{r}$$

Superposición:

$$|\vec{E} = \sum \Delta \vec{E} \to \int d\vec{E}$$


Distribuciones continuas de carga (2)

Campo \vec{E} en P creado por toda la distribución de carga en el volumen τ

$$\vec{E} = \int_{\tau} k_e \, \frac{dq}{r^2} \hat{r} = \int_{\tau} k_e \, \frac{dq}{r^3} \vec{r}$$

Distribución de carga en volumen

Carga Q; Volumen τ

Densidad media de carga (en volumen):

$$ho_m = \frac{Q}{ au}$$

Unidades: C/m³

Diferencial de carga dQ Diferencial de volumen $d\tau$

Densidad de carga (en volumen)

$$\rho = \frac{dQ}{d\tau}$$

$$dQ = \rho d\tau \Longrightarrow$$

$$dQ = \rho d\tau \Longrightarrow \qquad \vec{E} = \int_{\tau} k_e \, \frac{\rho d\tau}{r^3} \vec{r}$$

Distribución superficial de carga

А

 $dQ \longrightarrow dA$

Carga Q; Superficie A

Densidad superficial de carga media : $\sigma_m = \frac{\mathcal{Q}}{A}$

Unidades: C/m²

Diferencial de carga dQ Diferencial de superficie dA

Densidad superficial de carga:

$$\sigma = \frac{dQ}{dA}$$

$$dQ = \sigma dA \Rightarrow \left| \vec{E} = \int_{A} k_{e} \frac{\sigma dA}{r^{3}} \vec{r} \right|$$

Distribución lineal de carga

Carga Q; Longitud L

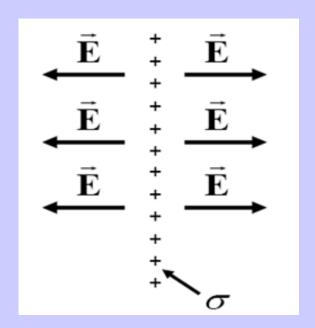
Densidad lineal de carga media :

$$\lambda_m = \frac{Q}{L}$$

Unidades: C/m

Diferencial de carga dQ

Diferencial de longitud dL


Densidad lineal de carga

$$\lambda = \frac{dQ}{dI}$$

$$dQ = \lambda dL \Longrightarrow \left| \vec{E} = \int_{L} k_{e} \frac{\lambda dL}{r^{3}} \vec{r} \right|$$

Campo electrostático creado por un plano cargado

Plano infinito, con σ uniforme

$$\varepsilon_0 = \frac{1}{4\pi k_e}$$

Propiedades del campo:

- Perpendicular al plano
- Alejándose si es el plano es positivo.
- Acercándose si el plano es negativo
- Uniforme
- Módulo

$$E = \frac{|\sigma|}{2\varepsilon_0}$$

(No deducimos el valor)