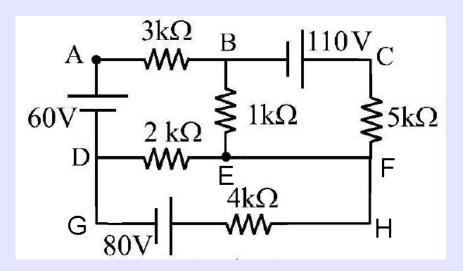
Tema 2-5 Reglas de Kirchhoff

Definiciones en un circuito


Rama: conexión en serie de componentes (recorridos por la misma intensidad)

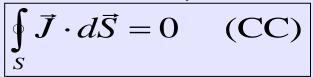
Camino: recorrido por varias ramas unidas entre sí

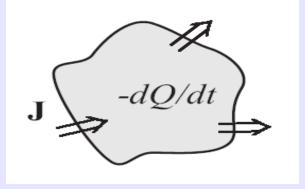
Nudo: punto en el que concurren tres o más ramas.

Red: conjunto de nudos y ramas.

Malla: camino cerrado (sin pasar dos veces por el mismo punto)

B,D,E,F son nudos ... E y F son el mismo nudo A,C,G, H no son nudos

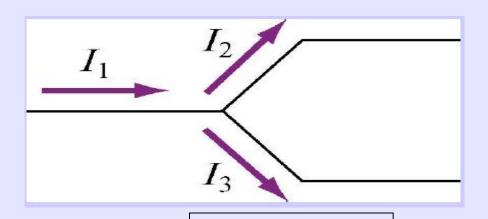

DAB, BCF, ... son ramas ABC, ABCFG, ..son caminos ABEDA es una malla ACHGA es una malla


Ecuación de continuidad de la carga

La intensidad neta que sale de una superficie cerrada es igual a la disminución de la carga en su interior por unidad de tiempo

$$\int_{S} \vec{J} \cdot d\vec{S} = -\frac{dQ}{dt}$$

En corriente continua (régimen estacionario) J son constantes pero la carga no puede aumentar continuamente, por lo tanto:



En corriente continua la intensidad neta que sale de una superficie cerrada es nula

Ley de Kirchhoff de las intensidades

RKI: La suma de todas las intensidades que salen de un nudo es nula

$$I_2 + I_3 - I_1 = 0$$

$$\sum_{i=1}^{N} I_i = 0$$

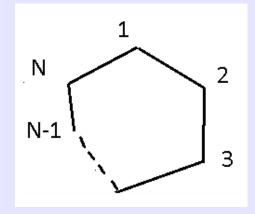
- + si I_i sale
- si I_i entra

Reglas de Kirchhoff del potencial en forma general

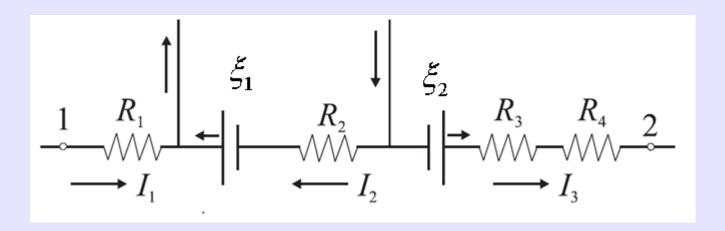
Consecuencia de que el potencial eléctrico es una función de punto

$$V = V(P) = V_P$$

En un camino, la caída de potencial entre dos puntos es la suma de las caídas de potencial.



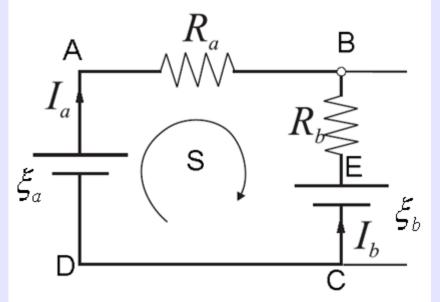
$$V_1 - V_N = (V_1 - V_2) + (V_2 - V_3) + \dots + (V_{N-1} - V_N)$$


En un camino cerrado, la caída de potencial es nula

$$V_1 - V_1 = 0 \Longrightarrow$$

$$(V_1 - V_2) + (V_2 - V_3) + \dots$$

 $+ (V_{N-1} - V_N) + (V_N - V_1) = 0$


Regla de Kirchhoff del potencial en un camino.

$$V_{12} = V_1 - V_2 = [I_1 R_1 - I_2 R_2 + I_3 (R_3 + R_4) - (-\xi_1 + \xi_2)]$$

$$V_1 - V_2 = \sum_{i=1}^N I_i R_i - \left(\sum_{i=1}^N \xi_i\right) \\ \text{+ en el sentido de 1 a 2} \\ \text{- si en contra del sentido de 1 a 2}$$

Regla de Kirchhoff del potencial para una malla

Malla: camino ABCDA

S: sentido de la malla

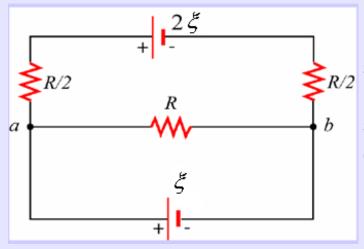
$$V_A - V_A = 0$$

$$I_a R_a - I_b R_b - (\xi_a - \xi_b) = 0$$

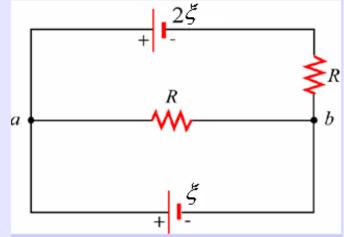
$$\xi_a - \xi_b = I_a R_a - I_b R_b$$

En general:

$$\sum_{i=1}^N \xi_i = \sum_{i=1}^N I_i R_i$$

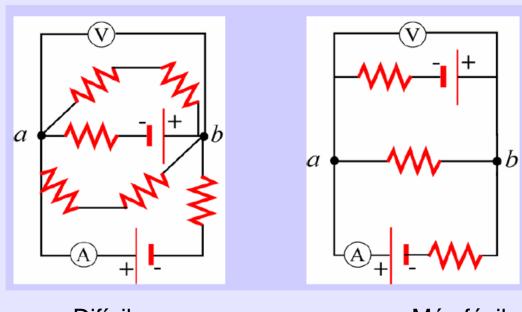

- + en el sentido de la malla
- En sentido contrario a la malla

Pasos para resolver un problema de circuitos


- 1. Rectificar el circuito (hacer rectángulos)
- 2. Simplificar resistencias en serie y paralelo
- 3. Asignar intensidad a las ramas
- 5. Escribir la regla de Kirchhoff de las intensidades a todos los nudos menos uno
- 4. Simplificar intensidades
- 6. Escribir la regla de Kirchhoff para cada malla (hasta cubrir todas las ramas)
- Resolver

Ejemplo: circuito sencillo

¿Cuál es la intensidad a través del generador de abajo?



Se pueden simplificar las resistencias en serie (aunque no a es necesario):

Ejemplo: un poco más complicado

Encontrar lo que marcan los voltímetros y amperímetros si todas las resistencias valen R y todas las fem ξ

Difícil

Más fácil