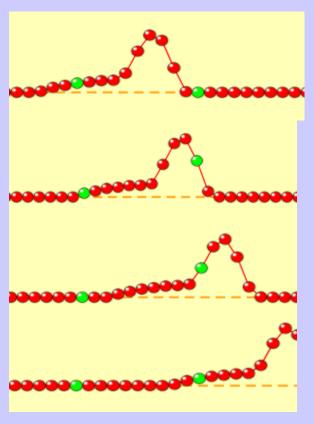
Tema 6 de Física 2

Ondas y ondas electromagnéticas

Ejemplo: ondas en una cuerda tensa

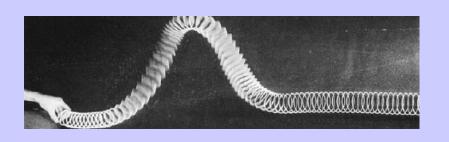
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html



Un punto de la cuerda

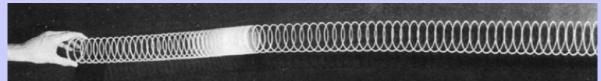
- oscila
- no se traslada

Clasificación de ondas



¿Cómo vibran?

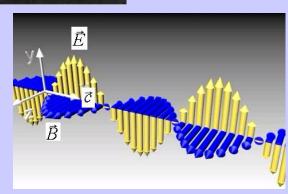
- •Transversales: ondas en una cuerda, OEM
- Longitudinales : sonido
- Mixtas: olas



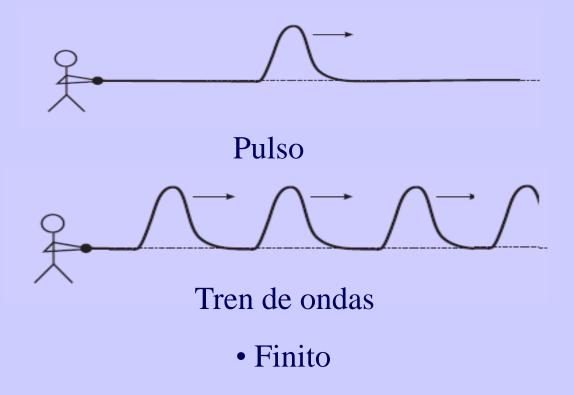
¿Qué vibra?

- Ondas mecánicas : masa
- Ondas electromagnéticas: **E** y **B**

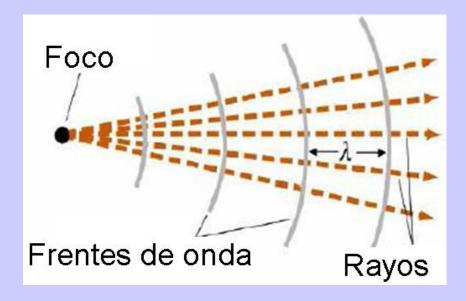
Se propagan en el vacío



Clasificación de ondas (3) ¿Qué forma o perfil?

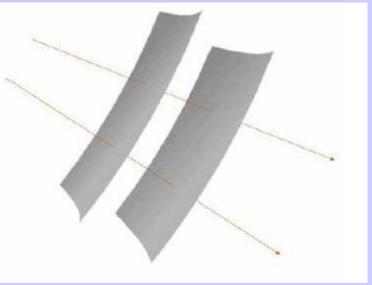


Conceptos básicos



- Foco: donde se produce la onda
- Frente de onda: puntos de igual fase
- Rayos: líneas de propagación

Onda planas, esféricas y circulares

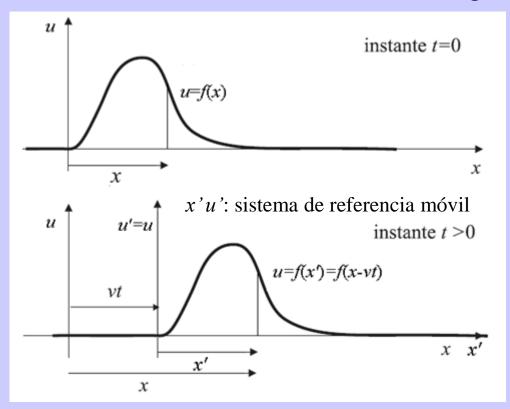


Esférica (3D)

Circular (2D) ~ Cilíndrica (3D)

Plana

Ecuación de una onda viajera



f(x-vt) es una onda que viaja hacia la derecha f(x+vt) es una onda que viaja hacia la izquierda

Ecuación diferencial de ondas

Si
$$u = f(x \pm vt)$$

$$\frac{\partial u}{\partial x} = f'(x \pm vt); \quad \frac{\partial^2 u}{\partial x^2} = f''(x \pm vt);$$

$$\frac{\partial u}{\partial t} = f'(x \pm vt)(\pm v); \quad \frac{\partial^2 u}{\partial t^2} = f''(x \pm vt)(\pm v)^2 = f''(x \pm vt)v^2 \Rightarrow$$

$$\frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} = f''(x \pm vt) = \frac{\partial^2 u}{\partial x^2}$$

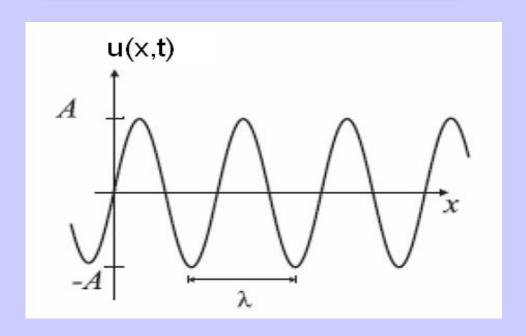
$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} = 0$$

Muchas veces se obtiene la relación entre las derivadas y no se tiene la solución:

Ejemplo: De las ecuaciones del campo eléctrico y magnérico se obtiene la ecuación de OEM y v=c

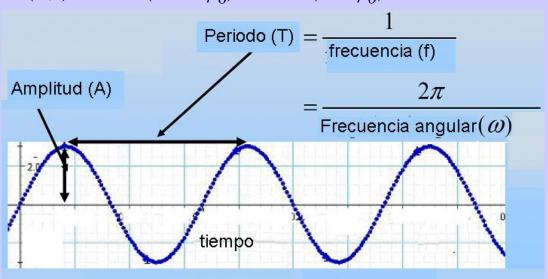
Ondas armónicas o sinusoidales

$$u(x,t)=A\cos(kx-\omega t+\varphi_0)$$



Periodicidad con respecto al tiempo

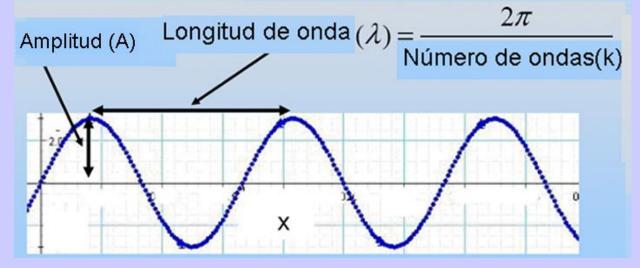
En x=0, es una función del tiempo: u(0,t)= $A \cos(-\omega t + \varphi_0)$ = $A \cos(\omega t - \varphi_0)$



Igual para cualquier punto x con otra fase inicial $u(x,0)=A\cos(\omega t - \varphi_0(x))$: fase inicial $\varphi_0(x)=[\varphi_0+kx]$

Periodicidad con respecto a x

En t=0, es una función periódica de x: $u(x,0)=A\cos(kx+\varphi_0)$



Igual para cualquier tiempo t con otra fase inicial $u(x,0)=A\cos(kx+\varphi_0(t))$: fase inicial $\varphi_0(t)=[-\omega t+\varphi_0]$

Conceptos de ondas armónicas

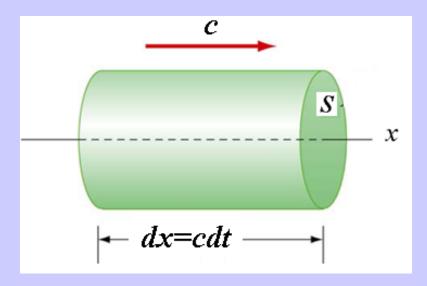
$$u=A\cos(kx-\omega t + \varphi_0)$$
Amplitud A , Fase $\varphi = \varphi(x,t)=kx-\omega t + \varphi_0$
Longitud de onda λ , periodo T
Frecuencia $f=\frac{1}{T}$
Frecuencia angular $\omega = \frac{2\pi}{T}$
Número de ondas $k=\frac{2\pi}{\lambda}$
Velocidad de propagación $v=\frac{\lambda}{T}=\frac{\omega}{k}$
Dirección de propagación +x (-x para $u=A\cos(kx+\omega t + \varphi_0)$

Intensidad de una onda

Intensidad: energía que por unidad de tiempo y área fluye a través de una superficie perpendicular a la dirección de propagación de la onda

Magnitudes: c: velocidad de la onda ρ_u : energía por unidad de volumen

Sdx: volumen de energía que atraviesa S en dt



$$dU = \rho_{u}(S dx) = \rho_{u}Sc dt$$

$$I = \frac{\mathrm{d}U}{A\,\mathrm{d}t} = \rho_u c$$

$$I=\rho_u c$$

Intensidad de una onda mecánica armónica

Densidad de energía de una onda armónica: Cada porción de masa Δm , con volumen $\Delta \tau$, realiza un movimiento armónico simple $u=A\cos(kx-\omega t)$, con velocidad $v=\partial u/\partial t=\omega A \operatorname{sen}(kx-\omega t)$. Con $v_{\max}=\omega A$, su energía es su energía cinética máxima:

$$\Delta U = \frac{1}{2} \Delta m v_{\text{max}}^2 = \frac{1}{2} \Delta m \omega^2 A^2$$

Usando: densidad de energía $\rho_u = \frac{\Delta U}{\Delta \tau}$ y densidad de masa $\rho = \frac{\Delta m}{\Delta \tau}$, $I = \rho_u c$:

$$I = \frac{1}{2} \rho \omega^2 A^2 c$$

Onda plana: *I* constante y *A* constante

Onda esférica:
$$I = \frac{P}{4\pi r^2} \Rightarrow A\alpha \frac{1}{r}$$

Onda cilíndrica o circular: $I = \frac{P}{2\pi rh}$ o $I = \frac{P}{2\pi r} \Rightarrow A\alpha \frac{1}{r^{1/2}}$