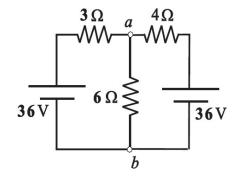
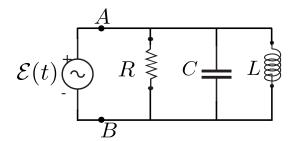

Física 2. Grado en Ingeniería de la Salud. Grupo 2. Segundo parcial (25/04/2018)

Notas importantes: 1) No use lápiz ni tinta roja. 2) Razone todos los pasos, escriba las fórmulas y sustituya. 3) Dé los resultados con la notación indicada y con sus unidades correspondientes si el resultado es numérico, y en una caja; ejemplos: $a = \frac{1}{2}g\,t^2$ o bien $a = 3\,\text{m/s}^2$.

CAMPO ELECTROSTÁTICO (3.5 puntos)

1.- (7 puntos) El campo electrostático uniforme de la figura tiene de módulo $E_0=200\sqrt{3}\,\mathrm{V/m}$ y sus líneas de campo forman un ángulo de 30° con el eje x. Determinar: (a) la expresión en forma de vector del campo electrostático \vec{E}_0 (al no tener componente z sólo escribiremos las componentes x e y); (b) la diferencia de potencial $V_{0,A}-V_{0,B}$ entre los puntos de coordenadas $A=(2,3)\,\mathrm{cm}$ y $B=(12,3)\,\mathrm{cm}$. (c) Si además se coloca una carga $Q_1=1/3\,\mathrm{nC}$ en el punto $C=(22,3)\,\mathrm{cm}$, calcular la fuerza total que actúa sobre una carga $Q_2=-1\,\mathrm{nC}$ colocada en el punto B y (d) el trabajo que realizan la fuerza eléctrica total cuando se desplaza Q_2 del punto B al punto A. (e) Realize un esquema del problema. Datos: $k_e=9\times10^9\mathrm{Nm}^2/\mathrm{C}^2$.




2.- (3 puntos) Deducir la capacidad equivalente C de la asociación en serie de dos condensadores de capacidades C_1 y C_2 . Obtener también la relaciones entre la carga de la asociación Q y la de cada uno de los condensadores Q_1 , Q_2 e igualmente entre las diferencias de potencial ΔV , ΔV_1 , ΔV_2 . Recuerde que tiene que deducir cada paso no solamente escribirlo.

CIRCUITOS (6.5 puntos)

3.-(3.5 puntos) En el circuito de la figura determinar (a) La corriente en cada rama (b) Calcular $V_{ab} = V_a - V_b$ a traves de dos caminos diferentes; (c) La potencia consumida en cada resistencia; (d) Las potencias producidas en cada generador.

4.- (5 puntos) En el circuito de la figura, $\xi(t) = 216\cos(2000t)$ V, siendo $R = 180\,\Omega$; $X_C = 120\,\Omega$ y $X_L = 40\,\Omega$ Calcular: (a) la impedancia del circuito vista desde los puntos A y B; (b) los fasores de las intensidades que circulan por el generador y por cada elemento; $\tilde{I}, \tilde{I}_R, \tilde{I}_L, \tilde{I}_C$ (c) la potencia media media consumida por cada elemento del circuito y la producida por el generador. (e) Representar en un diagrama fasorial las cuatro intensidades; (f) Obtener qué elemento (resistencia, bobina o condensador), y con qué valor debe conectarse en serie a la salida del generador para que I(t) y $\xi(t)$ estén en fase.

2.- (1.5 punto) Si tenemos una impedancia formada por una bobina en serie con una resistencia y las caidas de potencial eficaces correspondientes son $V_{L,e}$ y $V_{R,e}$ y la total V_e explique la relación entre las tres caidas de potencial eficaces.