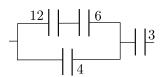

## Fundamentos Físicos de la Informática (F.F.I.)

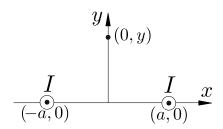
Grados en I. I. Ingeniería de Computadores, Ingeniería del Software y Tecnologías Informáticas. *Tercera Convocatoria* (17/12/2018)


## Constantes físicas.

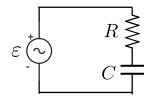
$$k = 1/(4\pi\varepsilon_0) = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$$
,  $\varepsilon_0 = 8,85 \times 10^{-12} \text{ F/m}$ ,  $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ ,  $c = 3 \times 10^8 \text{ m/s}$ .

- 1. (0,5 puntos) Tres cargas puntuales de igual valor  $q=12\,\mu\text{C}$  se encuentran situadas en los vértices de un triángulo isósceles dos de cuyos lados miden 13 cm siendo el tercer lado de 10 cm. Determinar el módulo de la fuerza,  $|\vec{F}|$ , que ejercen sobre una cuarta carga  $Q=24\,\mu\text{C}$  situada en el punto medio del lado de 10 cm.
- **2.** (0,5 puntos) El campo electrostático uniforme de la figura tiene módulo 2 V/cm y sus líneas de campo forman un ángulo  $\alpha$  con el eje x. Sabiendo que la diferencia de potencial  $V_A V_B$  entre el punto A de coordenadas (4,0) cm y el punto de B de coordenadas (4,3) cm es de 3 V, determinar el ángulo  $\alpha$  (expresar el resultado en grados).




3. (0,5 puntos) En la figura se muestra una asociación de condensadores cuyas capacidades se indican en microfaradios. Sabiendo que el voltaje del condensador de 6  $\mu$ F es 4 V, determinar el voltaje,  $V_3$ , del condensador de 3  $\mu$ F.




**4.** (1 punto) Una resistencia  $R_1$  consume una potencia de 100 W cuando se conecta a una batería ideal (sin resistencia interna) de corriente continua. Determinar la potencia  $P_1$  que consumiría dicha resistencia  $R_1$  si se conectase a la batería junto a una segunda resistencia  $R_2$  de igual valor a  $R_1$  en dos casos: (**a**) las resistencias se conectan en serie; (**b**) las resistencias se conectan en paralelo.

Continúa por detrás

**5.** (2,5 puntos) Dos hilos conductores paralelos de longitud infinita transportan intensidades iguales, I, perpendiculares al plano xy (dirigidas hacia el lector) y cortan al eje x en los puntos indicados en la figura. Determinar: (**a**) el campo magnético  $\vec{B}(x)$  que crean en los puntos del segmento del eje x entre ambos conductores; (**b**) el campo  $\vec{B}(y)$  que crean en un punto cualquiera del eje y (punto (0, y) en la figura) de la parte positiva de dicho eje.



- **6.** (1,5 puntos) Una bobina de 120 vueltas que tiene sus terminales en abierto está enrollada sobre un solenoide largo (ideal) de 4000 vueltas y de coeficiente de autoinducción 150 mH. Por el solenoide circula una intensidad inicial de 1,5 A que en cierto instante (t = 0) comienza a crecer a razón de 2 amperios por segundo. Determinar: (**a**) la fuerza electromotriz inducida (valor absoluto),  $|\mathcal{E}|$ , en el solenoide; (**b**) el flujo magnético,  $\Phi$ , que atraviesa la bobina de 120 vueltas en el instante inicial t = 0; (**c**) el coeficiente de inducción mutua, M, entre ambos bobinados.
- 7. (1 punto. **Solo I.S. e I.C.**) Una onda electromagnética plana de longitud de onda  $40 \,\mathrm{cm}$  se propaga en sentido positivo del eje x con su campo magnético oscilando en la dirección del eje z con una amplitud de  $40 \,\mathrm{nT}$ . (a) Escriba las expresiones completas de los campos eléctrico y magnético de la onda. (b) Calcule la energía, U, que incide cada  $10 \,\mathrm{segundos}$  sobre una superficie de  $0,1 \,\mathrm{m}^2$  dispuesta perpendicularmente al eje x.
- 8. (1 punto. Solo T.I.) Una asociación en serie de una resistencia,  $R = 45 \Omega$ , una bobina y un condensador se conecta a un generador de corriente alterna. (a) Trabajando a una frecuencia a la cual las reactancias de la bobina y el condensador son respectivamente  $X_L = 80 \Omega$  y  $X_C = 20 \Omega$ , el generador suministra un voltaje eficaz de 60 V. Determinar el valor de la intensidad eficaz,  $I_e$ . (b) Si pasamos ahora a trabajar a la frecuencia de resonancia del circuito y fijamos un voltaje eficaz  $V_e = 18 \text{ V}$  en el generador, el voltaje eficaz que se mide en la bobina es  $V_{e,L} = 16 \text{ V}$ . Determinar el voltaje eficaz en la resistencia  $V_{e,R}$  y el voltaje eficaz en el condensador  $V_{e,C}$ .
- 9. (2,5 puntos) En el circuito de la figura se muestra un condensador de capacidad  $C=5\,\mu\text{F}$  en serie con una resistencia,  $R=120\,\Omega$ , conectados a un generador de alterna. Si el voltaje en el condensador viene dado por  $V_C(t)=5\cos(4000\,t-\pi/2)\,\text{V}$ , determinar: (a) la impedancia del condensador; (b) las expresiones de la intensidad I(t) y del voltaje en la resistencia  $V_R(t)$ ; (c) la potencia media consumida; (d) la amplitud,  $\mathcal{E}_{\text{máx.}}$ , de la señal suministrada por el generador.



Titulación (indique IS, IC o TI):

Grupo:

P. 1: 
$$|\vec{F}| =$$

P 2 
$$\alpha =$$

P. 3: 
$$V_3 =$$

P 4 (a) serie: 
$$P_1 =$$

(b) paralelo: 
$$P_1$$
 =

P. 6: (a) 
$$|\mathscr{E}| =$$

(b) 
$$\Phi =$$

(c) 
$$M =$$

P 7 (Sólo IS e IC)

(a)
$$\vec{E}($$
 , ) =

$$\vec{B}($$
 ,  $)=$ 

(b) 
$$U =$$

P 8 (**Sólo TI**):

(a) 
$$I_{e} =$$

(b) 
$$V_{e,R} =$$

$$V_{\mathrm{e},C} =$$

Los problemas 5 y 9 se entregarán en folios aparte.