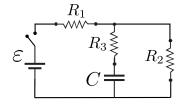
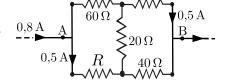
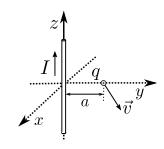
#### Fundamentos Físicos de la Informática (F.F.I.)


Grados en I.I. Ingeniería del Software y Tecnologías Informáticas. *Primera Convocatoria* (4/2/2022)

#### Constantes físicas

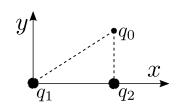

 $k = 1/(4\pi\varepsilon_0) = 9 \times 10^9 \,\mathrm{N \cdot m^2/C^2}, \ e = 1.6 \times 10^{-19} \,\mathrm{C}, \ \mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}, \ c = 3 \times 10^8 \,\mathrm{m/s}.$ 

## $1^{\underline{a}}$ parte: temas 1, 2 y 3


1. (1 punto) Tras cerrar el interruptor del circuito de la figura, esperamos a que el condensador alcance su carga final (estado estacionario). En dicha situación (estado estacionario) el valor de la intensidad que circula por el generador es 0,4 A. Determinar: (a) la carga final, Q, almacenada en el condensador; (b) la intensidad,  $I_0$ , que circuló por el generador en el instante inicial (t=0) tras cerrar el interruptor. Datos  $R_1 = 25 \Omega$ ,  $R_2 = 20 \Omega$ ,  $R_3 = 60 \Omega$  y  $C = 3, 5 \mu$ F.



**2.** (1 punto) En la asociación de resistencias de la figura, determinar: (a) la diferencia de potencial  $V_{\rm A}-V_{\rm B}$  y (b) el valor de la resistencia R.

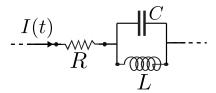



3. (0,5 puntos) En la figura se muestra un hilo conductor rectilíneo de gran longitud, dispuesto sobre el eje z por el que circula una intensidad I. Una partícula de carga  $q=1,6\times 10^{-19}\,\mathrm{C}$  que se encuentra en la posición indicada,  $a=2\,\mathrm{cm},\ y$  con velocidad velocidad  $\vec{v}=(12\,\hat{i}+5\,\hat{j})\,\mathrm{Mm/s}$  experimenta en dicho instante una fuerza magnética, debida al campo generado por el hilo, de módulo  $12\times 10^{-17}\,\mathrm{N}$ . Determinar el valor de la intensidad, I, que circula por el hilo.



**4.** (0,5 puntos) Una partícula cargada se mueve a velocidad constante en sentido positivo del eje x,  $\vec{v} = v \,\hat{i}$ , en una zona donde existe un campo eléctrico uniforme,  $\vec{E} = 1260 \,\hat{k} \, \text{V/m}$ , y un campo magnético uniforme,  $\vec{B} = 20 \,\hat{i} - 15 \,\hat{j} \, \text{mT}$ . Determinar el módulo, v, de la velocidad de la partícula.

5. (2 puntos) Se dispone de dos cargas puntuales  $q_1 = +125\,\mu\text{C}$ , situada en el origen de coordenadas, y  $q_2 = -27\,\mu\text{C}$  situada sobre el eje x en  $x = 4\,\text{cm}$ . (a) Calcular la fuerza que cada una de las cargas ejercen sobre una carga  $q_0 = 5\,\text{nC}$  situada en el punto  $(4,3)\,\text{cm}$  así como la fuerza total (suma de ambas). Copiar la figura del ejercicio y completarla dibujando las tres fuerzas obtenidas. (b) Determinar: (b.1) el trabajo que debemos realizar (externo),  $W_{\text{ext}}$ , para trasladar  $q_0$  desde el punto  $(4,3)\,\text{cm}$  hasta colocarla en reposo en el punto del eje x de abcisa  $x = -5\,\text{cm}$  y (b.2) el trabajo que realiza la fuerza eléctrica,  $W_{\text{eléc.}}$  que actúa sobre  $q_0$  en dicho desplazamiento.




(Nota. Indique claramente el signo de cada trabajo)

El examen continúa por la otra cara.

# $2^{\underline{a}}$ parte: temas 4, 5 y 6

- 6. (1 punto) Se dispone de un solenoide largo (ideal) que posee un coeficiente de autoinducción de  $5.4 \,\mathrm{mH}$ . (a) Por el solenoide circula una intensidad inicial de  $0.4 \,\mathrm{A}$  que comienza a crecer linealmente con el tiempo (proporcionalmente) hasta alcanzar un valor de  $1.4 \,\mathrm{A}$  al cabo de  $0.2 \,\mathrm{segundos}$ . Determinar la fuerza electromotriz inducida (valor absoluto),  $|\mathcal{E}|$ , en el solenoide durante dicho proceso. (b) Se introduce un segundo solenoide corto en el interior del primero cuyo número de espiras es la tercera parte que el del primero  $(N_2 = N_1/3)$  y cuyo radio es la mitad que el del solenoide inicial  $(R_2 = R_1/2)$ . Determinar el coeficiente de inducción mutua, M, entre ambos solenoides (**Nota**. El eje de ambos solenoides es el mismo).
- 7. (1 punto) Un circuito R-L serie se conecta a una batería ideal (sin resistencia interna). Tras la conexión, el voltaje en la resistencia es  $V_R(t) = 5(1 e^{-500 t}) \,\mathrm{V}$  (t en segundos). Determinar: (a) el instante, t, en el que la intensidad alcanza el 56 % de su valor final (presente el resultado en ms con dos decimales); (b) el voltaje en la bobina,  $V_L$ , en el instante  $t = 0, 8 \,\mathrm{ms}$  (presente resultado en voltios con dos decimales).
- 8. (1 punto) Sólo T.I. Considere la asociación en paralelo de una resistencia  $R = 280 \,\Omega$  y un condensador de capacidad  $C = 2,5 \,\mu\text{F}$ . (a) Determinar el voltaje  $V_R(t)$  entre los extremos de la resistencia cuando la intensidad por el condensador es  $I_C(t) = 0,35\cos(2500\,t + 0,2\pi)\,\text{A}$ . (b) Si utilizamos una frecuencia de trabajo tal que para un valor eficaz del voltaje en la asociación  $V_e = 42 \,\text{V}$ , el valor eficaz de la intensidad total que circula por la asociación es  $I_e = 0,25 \,\text{A}$ , ¿qué valor tiene la reactancia,  $X_C$ , del condensador a dicha frecuencia?
- 8. (1 punto) Sólo I.S. Una onda electromagnética plana de longitud de onda 4 cm se propaga en sentido positivo del eje y de forma que su campo eléctrico oscila en la dirección del eje z con una amplitud de  $2,4 \,\mathrm{V/m}$ . Determinar: (a) la frecuencia, f, y el número de onda k. (b) la expresión del vector campo magnético de la onda; (c) la energía, U, que incide cada minuto sobre una superficie plana de  $4 \,\mathrm{m}^2$  perpendicular al eje y.
- 9. (2 puntos) Por la asociación de la figura circula una intensidad  $I(t) = 0, 5\cos(5000\,t)$  A. Sabiendo que  $R = 20\,\Omega$ ,  $L = 6\,\mathrm{mH}$  y  $C = 2, 5\,\mu\mathrm{F}$ , determinar: (a) los fasores correspondientes al voltaje total,  $\widetilde{V}$ , y al voltaje en el paralelo LC,  $\widetilde{V}_{LC}$ , y sus respectivas señales instantáneas V(t) y  $V_{LC}(t)$ . (b) los fasores  $\widetilde{I}_L$ ,  $\widetilde{I}_C$  e  $\widetilde{I}$ , asociados a la intensidad en la bobina, el condensador e intensidad total, respectivamente, y representarlos en un diagrama. (c) la potencia media consumida por cada elemento.



Nombre, Apellidos:

## $1^{\underline{a}}$ Convocatoria. Grados IS-TI. Curso 2021-22.

(4-2-2022)

Titulación (indique IS o TI):

Grupo:

P. 1: (a) Q =

(b)  $I_0 =$ 

P. 2: (a)  $V_{\rm A} - V_{\rm B} =$ 

(b) R =

P. 3: I =

P. 4: v =

P. 6: (a)  $|\mathcal{E}| =$ 

(b) M =

P. 7: (a) t =

(b)  $V_L =$ 

P. 8:[Sólo T.I.] (a)  $V_R(t) =$ 

(b)  $X_C =$ 

P. 8:[Sólo I.S.] (a) f =

k =

(b)  $\vec{B}($ , ) =

(c) U =

Los ejercicios 5 y 9 se entregarán en folios aparte.