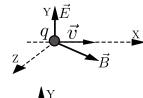
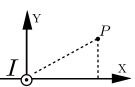

## Fundamentos Físicos de la Informática (F.F.I.)

Grados en I. I. Ingeniería de Computadores, Ingeniería del Software y Tecnologías Informáticas. *Tercera Convocatoria*. Curso 2024-25. (21-10-24).

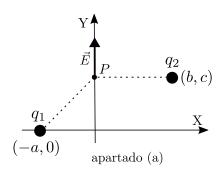
## Constantes físicas

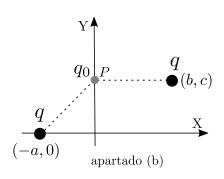

 $k = 1/(4\pi\varepsilon_0) = 9\times 10^9 \text{ N}\cdot\text{m}^2/\text{C}^2, \quad e = 1, 6\times 10^{-19} \text{ C}, \quad \varepsilon_0 = 8, 854\times 10^{-12} \text{ F/m}, \quad \mu_0 = 4\pi\times 10^{-7} \text{ H/m}, \quad c = 3\times 10^8 \text{ m/s}.$ 

1. (0,75 puntos) En el circuito de la figura, las dos baterías suministran igual potencia. Determine el valor de la fuerza electromotriz indicada como  $\mathcal{E}$  en la figura.



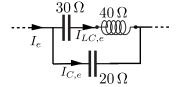

2. (0.5 puntos) Una batería de 12 V tiene una resistencia interna de  $5 \Omega$ . Determine la intensidad, I, en mA que circula por la batería cuando el 2 % de la potencia que suministra se consume en la resistencia interna.


3. (0,5 puntos) La partícula de la figura de carga positiva q=2e viaja a lo largo del eje X manteniendo su velocidad constante estando sometida simultáneamente a la fuerza de un campo magnético  $\vec{B}=(120\,\hat{\imath}+50\,\hat{k})\,\mathrm{mT}$  y a la fuerza de un campo eléctrico  $\vec{E}=3250\,\hat{\jmath}\,\mathrm{V/m}$ . Determine la velocidad,  $\vec{v}$ , de la partícula.

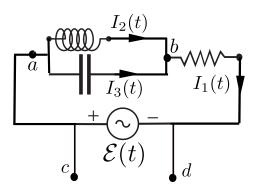



**4.** (0,75 puntos) En la figura se muestra un hilo conductor de longitud infinita colocado sobre el eje Z y circulado por una intensidad I en sentido positivo de dicho eje. Obtenga la expresión del vector campo magnético,  $\vec{B}(x,y)$ , en el punto P del plano XY de coordenadas (x,y).




**5.** (2,5) puntos) (a) Dos cargas puntuales  $q_1$  y  $q_2$  se encuentran situadas en los puntos de coordenadas (-a,0) y (b,c), según se muestra en la figura. Sabiendo que en el punto P, de coordenadas (0,c), dichas cargas generan un campo eléctrico de valor  $\vec{E}=36\times 10^4\,\hat{\jmath}\,\text{N/C}$ , determine: (a.1) los signos de las cargas de forma razonada; (a.2) los valores de  $q_1$  y  $q_2$ . (b) Se colocan ahora dos cargas positivas iguales de valor  $q=500\,\text{nC}$  en las mismas posiciones que las del apartado anterior. Manteniendo ambas cargas fijas, determine el trabajo que debemos realizar (nosotros) para llevar una tercera carga negativa  $q_0=-200\,\text{nC}$  desde el reposo en el punto P hasta dejarla fija en un punto muy alejado del eje Y (suponga  $y=\infty$ ); ¿qué trabajo realiza la fuerza eléctrica sobre  $q_0$  en dicho recorrido? **Datos**:  $a=6\,\text{cm}$ ,  $b=9\,\text{cm}$  y  $c=8\,\text{cm}$ 






(Continúa en la otra cara)

- 6. (1 punto) Disponemos de dos bobinas acopladas, (1) y (2), con coeficientes de autoinducción  $L_1=32\,\mathrm{mH}$  y  $L_2=50\,\mathrm{mH}$ , siendo el coeficiente de inducción mutua  $M=28\,\mathrm{mH}$ . Hacemos circular por (1) una intensidad  $I_1(t)$  que crece proporcionalmente con el tiempo desde  $0\,\mathrm{A}$  hasta alcanzar  $0,7\,\mathrm{A}$  en  $35\,\mathrm{ms}$  mientras mantenemos en abierto a (2) ( $I_2=0$ ). Determine en  $t=25\,\mathrm{ms}$ : (a) la fem (en valor absoluto) inducida en (1),  $|\mathcal{E}_1|$  y (b) el flujo magnético,  $\Phi_2$ , en la bobina (2).
- 7. (0,75 puntos) Por una bobina de inductancia  $L=0,2\,\mathrm{H}$  comienza a circular una intensidad I(t) de forma que el voltaje en los extremos de la misma es  $V(t)=12t\,\mathrm{V}$  (t en segundos). Determine la intensidad, I, en el instante  $t=15\,\mathrm{ms}$ .
- **8.** (0,75 puntos) **OPCIÓN A**. En la asociación de la figura se indican los valores de las reactancias de los condensadores y de la bobina. Sabiendo que el voltaje eficaz en la bobina es de 240 V, determine los valores eficaces de las tres intensidades  $I_{LC,e}$ ,  $I_{C,e}$  e  $I_e$ .



- **8.** (0,75 puntos) **OPCIÓN B**. Una onda electromagnética plana de frecuencia 1,5 GHz se propaga en sentido positivo del eje Z y su campo magnético oscila en la dirección del eje Y con una amplitud de 40 nT. Determine: (a) las expresiones del campo eléctrico y magnético de la onda; (b) la potencia media, P, que incide sobre una superficie circular de 0,2 m de radio perpendicular a la dirección de propagación.
- 9. (2,5 puntos) En el circuito de la figura  $\mathcal{E}(t)=120\cos(10^4t)$  V, la resistencia es  $R=30\,\Omega$  y las reactancias de la bobina y el condensador son  $X_L=60\,\Omega$  y  $X_C=20\,\Omega$ , respectivamente. (a) Determine la impedancia, Z, de la asociación de los tres elementos y los fasores  $\widetilde{I}_1$ ,  $\widetilde{I}_2$  e  $\widetilde{I}_3$  y represéntelos en un diagrama. Escriba la expresión correspondiente a  $I_1(t)$ . (b) Calcule la potencia media suministrada por el generador y consumida en cada elemento del circuito, verificando la igualdad entre suministro y consumo. (c) Obtenga el elemento y su valor (resistencia, coeficiente de autoinducción o capacidad) que debemos conectar entre los terminales c y d para que la corriente que circule por el generador esté en fase con su tensión.



| Apellidos: |  |  |
|------------|--|--|
|            |  |  |

Nombre: \_

## 3ª Convocatoria. Grados IC-IS-TI. Curso 2024-25.

fecha 21-10-24

Titulación (indique IC, IS o TI):

Grupo:

P. 1: 
$$\mathcal{E} =$$

P. 2: 
$$I =$$

P. 3: 
$$\vec{v} =$$

P. 4: 
$$\vec{B}(x,y) =$$

P. 6: (a) 
$$|\mathcal{E}_1| =$$

(b) 
$$\Phi_2 =$$

P. 7: 
$$I =$$

(En el ejercicio 8 si contesta a las dos opciones sólo se corregirá la primera)

P. 8: OPCIÓN A.

$$I_{LC,e} =$$

$$I_{C,e} =$$

$$I_e =$$

P. 8: OPCIÓN B.

(a) 
$$\vec{E}(\quad,\quad)=$$

$$\vec{B}(\quad,\quad)=$$

(b) 
$$P =$$

Los ejercicio  $5\ y\ 9$  se entregarán desarrollados en folios aparte.