Attractors for a class of impulsive systems

Everaldo de Mello Bonotto*

The theory of impulsive systems describes the evolution of processes where the continuous dynamics are interrupted by abrupt changes of state.

DEFINITION 1 A semiflow on X (denoted by (X,π)) is a family of maps $\{\pi(t)\colon t\in\mathbb{R}_+\}$ acting from X to X such that $\pi(0)=I,\,\pi(t+s)=\pi(t)\pi(s)$ for all $t,s\in\mathbb{R}_+$, and $\mathbb{R}_+\times X\ni (t,x)\mapsto \pi(t)x\in X$ is continuous.

DEFINITION 2 Given a semiflow (X,π) , a nonempty closed subset $M\subset X$ is called an *impulsive set* if for each $x\in M$ there exists $\epsilon_x>0$ such that $\bigcup_{t\in(0,\epsilon_x)}\{\pi(t)x\}\cap M=\emptyset$.

DEFINITION 3 An *impulsive dynamical system* (X, π, M, I) consists of a semiflow (X, π) , an impulsive set $M \subset X$ and a continuous function $I \colon M \to X$ called impulsive function.

The *impact function* associated to (X, π, M, I) is given by

$$\phi(x) = \left\{ \begin{array}{ll} s, & \text{if} & \pi(s)x \in M \text{ and } \pi(t)x \not \in M, \ 0 < t < s, \\ \infty, & \text{if} & \pi(t)x \not \in M \text{ for all } t > 0. \end{array} \right.$$

The impulsive positive trajectory of $x \in X$ in (X, π, M, I) is a map $\tilde{\pi}(\cdot)x \colon J_x \to X$ defined on some interval $J_x \subseteq \mathbb{R}_+$ containing 0, given inductively by the following way: if $\phi(x) = \infty$ then $\tilde{\pi}(t)x = \pi(t)x$ for all $t \in \mathbb{R}_+$. But, if $\phi(x) < \infty$ then we set $x = x_0^+$ and we define $\tilde{\pi}(\cdot)x$ on $[0, \phi(x_0^+)]$ by

$$\tilde{\pi}(t)x = \begin{cases} \pi(t)x_0^+, & \text{if} \quad 0 \leqslant t < \phi(x_0^+), \\ I(\pi(\phi(x_0^+))x_0^+), & \text{if} \quad t = \phi(x_0^+). \end{cases}$$

Now, set $s_0 = \phi(x_0^+)$, $x_1 = \pi(s_0)x_0^+$ and $x_1^+ = I(\pi(s_0)x_0^+)$. Since $s_0 < \infty$, the previous process can go on, but now starting at x_1^+ . If $\phi(x_1^+) = \infty$ then we define $\tilde{\pi}(t)x = \pi(t-s_0)x_1^+$ for all $t \geq s_0$. But, if $s_1 = \phi(x_1^+) < \infty$ i.e., $x_2 = \pi(s_1)x_1^+ \in M$ then we define $\tilde{\pi}(\cdot)x$ on $[s_0, s_0 + s_1]$ by

$$\tilde{\pi}(t)x = \begin{cases} \pi(t - s_0)x_1^+, & \text{if } s_0 \leq t < s_0 + s_1, \\ I(x_2), & \text{if } t = s_0 + s_1. \end{cases}$$

Here, we denote $x_2^+ = I(x_2)$. This process ends after a finite number of steps if $\phi(x_n^+) = \infty$ for some $n \in \mathbb{N}$, or it may

proceed indefinitely, if $\phi(x_n^+) < \infty$ for all $n \in \mathbb{N}$ and, in this case, $\tilde{\pi}(\cdot)x$ is defined in [0,T(x)), where $T(x) = \sum_{i=0}^{\infty} s_i$. We shall assume that $T(x) = \infty$ for all $x \in X$.

DEFINITION 4 A nonempty set $\tilde{\mathcal{A}} \subset X$ is called a *global attractor* for (X,π,M,I) if $\tilde{\mathcal{A}}$ is pre-compact and $\tilde{\mathcal{A}} = \overline{\tilde{\mathcal{A}}}\backslash M$, $\tilde{\mathcal{A}}$ is $\tilde{\pi}$ -invariant $(\tilde{\pi}(t)A = A \text{ for all } t \in \mathbb{R}_+)$, and $d_H(\tilde{\pi}(t)B,\tilde{\mathcal{A}}) \stackrel{n \to \infty}{\longrightarrow} 0$ for every bounded set $B \subset X$, where d_H is the Hausdorff semidistance.

Let $\hat{X} = \{x \in I(M) \colon \phi(x_k^+) < \infty \text{ for all } k \in \mathbb{N}\}$ and $g \colon \hat{X} \to \hat{X}$ be given by $g(x) = I(\pi(\phi(x))x)$. The system (\hat{X},g) defines a discrete dynamical system on \hat{X} associated with the impulsive dynamical system (X,π,M,I) .

DEFINITION 5 A set $\hat{A} \subset \hat{X}$ is called a *discrete global attractor* for (\hat{X}, g) if \hat{A} is compact, \hat{A} is *g*-invariant $(g(\hat{B}) = \hat{B})$, and $d_H(g^n(\hat{B}), \hat{A}) \stackrel{n \to \infty}{\longrightarrow} 0$ for every bounded set $\hat{B} \subset \hat{X}$.

In this work, we establish sufficient conditions for the existence of global attractors for the systems (X, π, M, I) and (\hat{X}, g) . Furthermore, we investigate the relationship between these attractors. An application involving a nonlinear reaction-diffusion initial boundary value problem is also presented.

Acknowledgements

This research was partially supported by FAPESP # 2020/14075-6 and CNPq # 310540/2019-4.

References

- E. M. Bonotto, M. C. Bortolan, A. N. Carvalho, R. Czaja, Global attractors for impulsive dynamical systems a precompact approach, J. Differential Equations, 259 (2015), 2602–2625.
- [2] E. M. Bonotto, J. M. Uzal, Global attractors for a class of discrete dynamical systems, J. Dynamics and Differential Equations, (2024). https://doi.org/10.1007/s10884-024-10356-9

^{*}Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Campus de São Carlos, São Paulo (Brazil). Email: ebonotto@icmc.usp.br