Observability inequality for the Grushin equation on a multi-dimensional domain

Mathilda Trabut*

Introduction and main result

Let \mathcal{B}_R denote the open ball of radius R>0 of \mathbb{R}^{d_1} , and Ω_y denote a non-empty bounded open set of \mathbb{R}^{d_2} with $d_1,d_2>0$. For T>0, we consider u a solution of the Grushin equation posed in $(0,T)\times\mathcal{B}_R\times\Omega_y$, i.e. satisfying

$$(G) \quad \begin{cases} \partial_t u - \Delta_x u - ||x||^2 \Delta_y u = 0 \text{ in } (0,T) \times \mathcal{B}_R \times \Omega_y, \\ u = 0, \text{ on } (0,T) \times \partial (\mathcal{B}_R \times \Omega_y). \end{cases}$$

It is a degenerate parabolic equation where the diffusion coefficient in y vanishes at the center of the ball.

For $\Gamma \subset \partial \mathcal{B}_R$, we say that the Grushin equation is observable through $\Gamma \times \Omega_y$ at time T if there exists a constant C such that any solution of (G) satisfies

$$(O_T) \int_{\mathcal{B}_R \times \Omega_y} |\nabla u(T)|^2 dx dy \le C \int_0^T \int_{\Omega_y} \int_{\Gamma} \left| \frac{\partial u}{\partial n} \right|^2 d\sigma(x) dy dt,$$

THEOREM 1 Let Γ be a non-empty open subset of $\partial \mathcal{B}_R$, and $T^* = \frac{R^2}{2d_1}$, then (O_T) holds for all $T > T^*$, and (O_T) does not hold for all $T < T^*$.

<u>Remarks:</u> The minimal time T^* appears because of the degeneracy at x=0. Indeed if there is no degeneracy, the system reduces to the heat equation which is observable at any T>0.

If $\Gamma = \partial \mathcal{B}_R$, this result is known, see [1]. The goal of this work is to generalize this result if Γ is a non-empty open subset of $\partial \mathcal{B}_R$. Since the negative result on $\partial \mathcal{B}_R$ implies the negative result on Γ , it remains to prove that (O_T) holds for $T > T^*$.

Strategy of proof

We denote $(\lambda_p, \phi_p)_{p \in \mathbb{N}}$ the sequence of eigenvalues and eigenfunctions of the Dirichlet-Laplacian on Ω_y . As it is done in [1] we decompose the equation in the basis $(\phi_p)_{p \in \mathbb{N}}$. Then $u_p := \langle u, \phi_p \rangle$ satisfies the harmonic-heat equation

$$(H_p) \quad \begin{cases} \partial_t u_p - \Delta u_p + \lambda_p^2 ||x||^2 u_p = 0 \text{ in } (0,T) \times \mathcal{B}_R, \\ u_p = 0, \text{ on } (0,T) \times \partial \mathcal{B}_R. \end{cases}$$

The strategy is to prove that (H_p) is observable through Γ uniformly in p. Here are the main steps to get this observability inequality.

- From [2] we already know that (H_p) is observable through $\partial \mathcal{B}_R$ at any time T > 0. However, we need to refine this result to get an observability constant which is explicit in T and λ_p .
- We apply a Lebeau-Robbiano type strategy to obtain the observability through Γ . To this end we adapt Miller's proof [3], tracking the dependance in λ_p in the estimates.
- We deduce that (H_p) is observable through Γ uniformly in p at time T, if T > T*.

Once we have the observability inequality for (H_p) with the constant uniform in p, we obtain (O_T) by summing in p.

References

- [1] K. Beauchard, P. Cannarsa, M. Yamamoto, Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type, Inverse Problem, 2014. https://doi.org/10. 1088/0266-5611/30/2/025006
- [2] K. Beauchard, J. Dardé, S. Ervedoza, Minimal time issues for the observability of Grushin-type equations, Annales de l'Institut Fourier, 2020. https://doi.org/10.5802/aif.3313
- [3] L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete and Continuous Dynamical Systems - B, 2010. https://doi.org/10.3934/dcdsb.2010.14.1465

^{*}Institut de Mathématiques de Toulouse, Université de Toulouse, (FRANCE). Email: mathilda.trabut@math.univ-toulouse.fr