Geometric inverse problem of determining multidimensional domains

Jone Apraiz

University of the Basque Country, Spain

joint work with

Anna Doubova (University of Seville)
Enrique Fernández-Cara (University of Seville)
Masahiro Yamamoto (The University of Tokyo)

Workshop on PDEs and Control 2025 (PKM-60)

Sevilla, September 4th, 2025

1/24

Outline

- Introduction
 - General ideas
 - Our background
 - Purpose of the new work
 - Related works
- Determining multidimensional domains
 - Setting up the problem (same coefficients)
 - Main results (same coefficients)
 - Conclusions and other cases (same coefficients)
 - Setting up the problem (different coefficients)
 - Main results (different coefficients)
- 3 Work in progress and open problems

Outline

- Introduction
 - General ideas
 - Our background
 - Purpose of the new work
 - Related works
- Determining multidimensional domains
 - Setting up the problem (same coefficients)
 - Main results (same coefficients)
 - Conclusions and other cases (same coefficients)
 - Setting up the problem (different coefficients)
 - Main results (different coefficients)
- Work in progress and open problems

General ideas

Geometric inverse problems:

- One interest: find causes for an observed effect → identification or reconstruction.
- Great development → relevant for applications: elastography and medical imaging, seismology, fluid mechanics, traffic models, finances...
- Why study uniqueness?
 - Well-posed in the sense of Hadamard (1902): existence, uniqueness and stability.
 - If one of those conditions is not satisfied ⇒ problem is ill-posed.
 - Majority of IP are not well-posed.

Our background

- "Uniqueness and numerical reconstruction for inverse problems dealing with interval size search",
- "Some Inverse Problems for the Burgers Equation and Related Systems":
 - (2021) [Apraiz, Cheng, Doubova, Fernández-Cara, Yamamoto].
 - 1D heat, wave, Burgers and related equations.
 - Goal: find the size of the spatial interval from some appropriate boundary observations.
 - Uniqueness sensitive to boundary or initial data.

Purpose of the new work

- Geometric inverse problems \longrightarrow linear **parabolic** systems (unknown initial data and coefficients) with non-homogeneous part f(x, t) satisfying some specific assumptions.
- Goals:
 - Identify a subdomain within a multidimensional set $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$.
 - Establish uniqueness results through observations on a part of the boundary or in an interior domain.
- Derive information about the initial data.
- Main tools: unique continuation, time analyticity of the solutions and semigroup theory.

Some related works

- Detecting cavities by electrostatic boundary measurements (2002) [Alessandrini, Morassi, Roset].
- Identification of inmersed obstacle via boundary measurements (2005)
 [Alvarez, Conca, Friz, Kavian, Ortega].
- A geometric inverse problem for the Boussinesq system (2006)
 [Doubova, Fernández-Cara, González-Burgos, Ortega].
- Introduction to Inverse Problems for Evolution Equations: Stability and Uniqueness by Carleman Estimates (2025) [Yamamoto].

Outline

- Introduction
 - General ideas
 - Our background
 - Purpose of the new work
 - Related works
- Determining multidimensional domains
 - Setting up the problem (same coefficients)
 - Main results (same coefficients)
 - Conclusions and other cases (same coefficients)
 - Setting up the problem (different coefficients)
 - Main results (different coefficients)
- Work in progress and open problems

Setting up the problem (same coefficients) I

- $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ and $D_1, D_2 \subset\subset \Omega$.
- For k = 1, 2,

$$\begin{cases} \partial_t u_k + \mathcal{A} u_k = f(x, t) & \text{in } (\Omega \setminus \overline{D}_k) \times (0, T), \\ u_k = 0 & \text{on } \partial D_k \times (0, T), \\ u_k = g(x, t) & \text{on } \partial \Omega \times (0, T), \end{cases}$$
(1)

where $f \not\equiv 0$ is an external source, $g \not\equiv 0$ is a boundary input in (0, T) and

$$\mathcal{A}v(x) := -\sum_{i,j=1}^d \partial_i(a_{ij}(x)\partial_j v(x)) + \sum_{j=1}^d b_j(x)\partial_j v(x) + c(x)v(x).$$

(ロ) (回) (目) (目) (目) (の)

Setting up the problem (same coefficients) II

• **Assume**: $a_{ij} = a_{ji}$ in $C^1(\overline{\Omega})$, b_j and c in $L^{\infty}(\Omega)$, $f \in L^2(\Omega \times (0, T))$, $g \in L^2(0, T; H^{3/2}(\partial \Omega))$, $c(x) \ge c_0 > 0$ in Ω for a constant c_0 sufficiently large, and $\exists \ \alpha > 0$:

$$\sum_{i,j=1}^{d} a_{ij}(x)\xi_{i}\xi_{j} \ge \alpha |\xi|^{2} \quad \forall \, \xi \in \mathbb{R}^{d}, \text{ a.e. in } \underline{\Omega}.$$
 (2)

Observe: initial values of u₁ and u₂ are not specified.

Setting up the problem (same coefficients) III

• For k = 1, 2, linear operators $A_k : \mathcal{D}(A_k) \to L^2(\Omega \setminus \overline{D}_k)$, with

$$\mathcal{D}(A_k) := \{ v \in H^1_0(\Omega \backslash \overline{D}_k) : \ \mathcal{A}v \in L^2(\Omega \backslash \overline{D}_k) \}$$

and

$$(A_k v)(x) := Av(x)$$
 a.e. in $\Omega \setminus \overline{D}_k$

for all $v \in \mathcal{D}(A_k)$.

Conormal derivative associated to the coefficients a_{ij}:

$$\frac{\partial \mathbf{v}}{\partial \nu_{\mathsf{A}}} := \sum_{i,j=1}^{d} \mathbf{a}_{ij} \partial_{i} \mathbf{v} \, \nu_{j}$$

 $(\nu = \nu(x)$ outward unit normal vector at points $x \in \partial \Omega$).

◆ロ → ◆母 → ◆ き → ◆ き → りへで

Setting up the problem (same coefficients) IV

Question Q1

- $\gamma \subset \partial \Omega$ nonempty and open.
- u_1 and u_2 weak solutions to (1) corresponding to D_1 and D_2 ($\forall k \in \{1,2\}$, $u_k \in L^2(0,T;H^1_0(\Omega \setminus \overline{D}_k))$ and satisfy (1) in the distributional sense).

Does
$$\frac{\partial u_1}{\partial \nu_4} = \frac{\partial u_2}{\partial \nu_4}$$
 on $\gamma \times (0, T) \Longrightarrow D_1 = D_2$?

Main results (same coefficients) I

Assumptions for f :

 $f, \partial_t f, \dots, \partial_t^m f \in L^2(\Omega \times (0, T))$ for some $m \ge 0$ (3)

$$\begin{cases} \exists t_{0}, t_{1}, t_{2} \text{ with } 0 < t_{0} < t_{1} < t_{2} \leq T \text{ such that} \\ \partial_{t}^{m} f(x, t) = \begin{cases} a_{1} f_{0}(x) + r_{1}(x, t) & \text{for } t_{0} < t < t_{1}, \\ a_{2} f_{0}(x) + r_{2}(x, t) & \text{for } t_{1} < t < t_{2}, \end{cases} \\ \text{where } r_{1} : (t_{0}, t_{1}] \rightarrow L^{2}(\Omega) \text{ is analytic, } r_{2} \in L^{2}(\Omega \times (t_{1}, t_{2})), \\ a_{1}, a_{2} \in \mathbb{R}, f_{0} \in L^{2}(\Omega) \text{ and } a_{1} f_{0}(x) \not\equiv a_{2} f_{0}(x). \end{cases}$$

- Assumptions on r_1 : $\exists \varepsilon > 0$ such that r_1 can be extended to an analytical function in $(t_0, t_1 + \varepsilon)$.
- $f_0 \not\equiv 0$ and $a_1 \not= a_2$.
- Assumptions for g:
 - It's independent of t and $g \in H^{3/2}(\partial\Omega)$.

4 D A 4 D A 4 D A D A D A A D A A D A A D A A D A A D

Main results (same coefficients) II

Theorem (1 - Answer to Q1)

Let u_1 and u_2 be solutions to (1) respectively corresponding to the simply connected open sets D_1 and D_2 . Suppose that f satisfies (3), (4) and moreover the functions f_0 , r_1 and r_2 in (4) satisfy

$$\begin{cases} f_0(x) = 0 \text{ in } D_1 \cup D_2, r_1(x,t) = 0 \text{ in } (D_1 \cup D_2) \times (t_0,t_1) \\ \text{and } r_2(x,t) = 0 \text{ in } (D_1 \cup D_2) \times (t_1,t_2). \end{cases}$$
 (5)

Then the answer to Q1 is yes. Moreover, $u_1(\cdot,0) = u_2(\cdot,0)$ in $\Omega \setminus (\overline{D_1 \cup D_2})$.

Conclusions and other cases (same coefficients) I

• Answers for Q1 in other cases:

• $f(x, t) = f_0(x)\mu(t)$, where

$$\begin{cases} f_0 \in L^2(\Omega), f_0(x) = 0 \text{ in } D_1 \cup D_2 \text{ and } f_0 \not\equiv 0, \\ \mu \text{ is piecewise polynomial and } \mu \not\in C^m([0, T]) \text{ for some } m \geq 0. \end{cases}$$

- \Longrightarrow uniqueness for Q1.
- $f \equiv 0$ and $g \not\equiv 0$.
 - $g(x,t) = g_0(x)\mu(t)$ for all $(x,t) \in \partial \Omega \times (0,T)$, where $g_0 \in H^{3/2}(\partial \Omega)$ and

$$\mu(t) = \begin{cases} a_1 t, & \text{if } 0 < t < t_1, \\ a_2(t - t_1) + a_1 t_1, & \text{if } t_1 < t < T \end{cases}$$

for some $a_1, a_2 \in \mathbb{R}$ with $a_1 \neq a_2$ and some t_1 with $0 < t_1 < T$.

 \Longrightarrow uniqueness for Q1.

<ロ > ← □

Conclusions and other cases (same coefficients) II

$$u_k(x,0) = 0 \text{ in } \Omega \setminus \overline{D_k} \text{ for } k = 1,2.$$
 (6)

4 D F 4 D F 4 D F 4 D F

 \Longrightarrow uniqueness for Q1.

- f ≡ 0 and g ≠ 0 and (6) is not satisfied ⇒ uniqueness can fail for Q1 (Counterexample).
- **(**6), $f \not\equiv 0$ and $g \equiv 0 \Longrightarrow$ uniqueness can fail for **Q1**
- **6** (6), $g \equiv 0$ and $f(x,t) = f_0(x)\mu(t)$ with a smooth $\mu \Longrightarrow$ uniqueness for Q1:

Proposition

Let us assume that $f(x,t) = f_0(x)\mu(t)$ a.e. with

$$\left\{ \begin{array}{l} \textit{f}_0 \in \textit{L}^2(\Omega), \;\; \textit{Supp}\,\textit{f}_0 \subset \Omega \setminus \overline{(\textit{D}_1 \cup \textit{D}_2)} \;\; \textit{and} \;\; \textit{f}_0 \not\equiv 0, \\ \mu \in \textit{C}^1([0,T]) \;\; \textit{and} \;\; \mu \not\equiv 0 \end{array} \right.$$

and $g \equiv 0$. Also, let us assume that (6) holds. Then, the answer to **Q1** is yes.

Jone Apraiz Geometric IP Sevilla, September 4th, 2025 16/24

Setting up the problem (different coefficients) I

- $\Omega \subset \mathbb{R}^d$ $(d \geq 2)$ and $D_1, D_2 \subset \subset \Omega$.
- For k = 1, 2,

$$\mathcal{A}^k v(x) := -\sum_{i,j=1}^d \partial_i (a_{ij}^k(x) \partial_j v(x)) + \sum_{j=1}^d b_j^k(x) \partial_j v(x) + c^k(x) v(x)$$

- Assume: $a_{ij}^k = a_{ji}^k \in C^1(\overline{\Omega})$, $b_j^k, c^k \in L^{\infty}(\Omega)$ given for k = 1, 2, with the a_{ij}^k satisfying (2) and the c^k satisfying $c^k(x) \ge c_0 > 0$ a.e. in Ω for c_0 sufficiently large.
- Operators $P_k : \mathcal{D}(P_k) \to L^2(\Omega \setminus \overline{D}_k)$ as before:

$$\mathcal{D}(P_k) := \{ v \in H_0^1(\Omega \setminus \overline{D}_k) : \mathcal{A}^k v \in L^2(\Omega \setminus \overline{D}_k) \}$$

and

$$(P_k v)(x) := \mathcal{A}^k v(x)$$
 a.e. in $\Omega \setminus \overline{D}_k$, $\forall v \in \mathcal{D}(P_k)$.

17/24

Setting up the problem (different coefficients) II

Question Q2

- $\omega \subset\subset \Omega \setminus (\overline{D_1 \cup D_2})$ nonempty and open.
- u_k a weak solution to

$$\begin{cases} \partial_t u_k + \mathcal{A}^k u_k = f(x, t) & \text{in } (\Omega \setminus \overline{D}_k) \times (0, T), \\ u_k = 0 & \text{on } \partial D_k \times (0, T), \\ u_k = g(x, t) & \text{on } \partial \Omega \times (0, T) \end{cases}$$
(7)

for k = 1, 2.

Does
$$u_1 = u_2$$
 in $\omega \times (0, T) \Longrightarrow D_1 = D_2$?

Main results (different coefficients) I

Theorem (2 - Answer to Q2)

Let ω , D_1 and D_2 be as above and let u_k be a weak solution to (7) for k=1,2. Assume that f satisfies (3), (4) and moreover the functions f_0 , r_1 and r_2 in (4) satisfy

$$\begin{cases} f_0(x) = 0 \text{ in } D_1 \cup D_2 \cup \omega, r_1(x,t) = 0 \text{ in } (D_1 \cup D_2 \cup \omega) \times (t_0,t_1) \\ \text{and } r_2(x,t) = 0 \text{ in } (D_1 \cup D_2 \cup \omega) \times (t_1,t_2). \end{cases}$$

Also, assume that

$$P_1P_2v = P_2P_1v \quad \forall v \in C_0^{\infty}(\Omega \setminus (\overline{D_1 \cup D_2})).$$

Then the answer to Q2 is yes.

Jone Apraiz

Outline

- Introduction
 - General ideas
 - Our background
 - Purpose of the new work
 - Related works
- Determining multidimensional domains
 - Setting up the problem (same coefficients)
 - Main results (same coefficients)
 - Conclusions and other cases (same coefficients)
 - Setting up the problem (different coefficients)
 - Main results (different coefficients)
- Work in progress and open problems

Work in progress and open problems I

Work in progress: Reconstruction, same coefficients:

Let $\gamma \subset \partial \Omega$ be a nonempty open subboundary and u a weak solution to

$$\begin{cases} \partial_t u + \mathcal{A} u = f(x,t) & \text{in } (\Omega \setminus \overline{D}) \times (0,T), \\ u = 0 & \text{on } \partial(\Omega \setminus \overline{D}) \times (0,T), \end{cases}$$

for some nonempty simply connected open set $D \subset\subset \Omega$. Assume that

$$\frac{\partial u}{\partial \nu_A} = \beta$$
 on $\gamma \times (0, T)$.

Can we find D (and $u|_{t=0}$) from f and β ?

Work in progress and open problems II

Reformulation of the reconstruction problem:

$$\begin{cases} \text{Minimize } \frac{1}{2} \left\| \frac{\partial u}{\partial \nu_A} - \beta \right\|_X^2 \\ \text{Subject to } \overline{D} \in \mathcal{B}, \ u_0 \in L^2(\Omega \setminus \overline{D}), \ u \ \text{solves (8)}, \end{cases}$$

where β is given, the admissible class of subdomains \mathcal{B} and the Hilbert **space** *X* are appropriately chosen and:

$$\begin{cases} \partial_t u + \mathcal{A}u = f(x,t) & \text{in } \Omega \setminus \overline{D} \times (0,T), \\ u = 0 & \text{on } \partial(\Omega \setminus \overline{D}) \times (0,T), \\ u|_{t=0} = u_0 & \text{in } \Omega \setminus \overline{D}. \end{cases}$$
(8)

- Numerical resolution \longrightarrow method of fundamental solutions.
- Useful: "Some new results for geometric inverse problems with the method of fundamental solutions" (2021) [Carvalho, Doubova, Fernández-Cara, Rocha de Faria].

Work in progress and open problems III

Similar results for other equations:

2.1 Quasi-Stokes system (linear parabolic): for $k = 1, 2, (u_k, p_k)$ solutions to

$$\begin{cases} \partial_t u_k - \nu_0 \Delta u_k + (a \cdot \nabla) u_k + (u_k \cdot \nabla) b + \nabla p_k &= f(x, t) & \text{in } (\Omega \setminus \overline{D}_k) \times (0, T), \\ \nabla \cdot u_k &= 0 & \text{in } (\Omega \setminus \overline{D}_k) \times (0, T), \\ u_k &= 0 & \text{on } \partial(\Omega \setminus \overline{D}_k) \times (0, T). \end{cases}$$

- $\nu_0 > 0$, $a, b \in L^{\infty}(\Omega)^d$, and the components of f satisfy (3)–(5).
- Notation:

$$\sigma(u,p) := -\frac{p}{l} \operatorname{Id}. + 2\nu_0 \operatorname{e}(u), \text{ where } \operatorname{e}(u) := \frac{1}{2} (\nabla u + (\nabla u)^l)$$

Assume

$$\sigma(u_1, p_1) \cdot \nu = \sigma(u_2, p_2) \cdot \nu \text{ on } \gamma \times (0, T).$$

$$\Longrightarrow D_1 = D_2$$
.

Work in progress and open problems IV

2.2 Linearized Boussinesq systems: for $k = 1, 2 (u_k, p_k, \theta_k)$ satisfies

$$\begin{cases} \partial_t u_k - \nu_0 \Delta u_k + (a \cdot \nabla) u_k + (u_k \cdot \nabla) b + \nabla p_k = \theta_k g + f(x, t) & \text{in } (\Omega \setminus \overline{D}_k) \times (0, T), \\ \nabla \cdot u_k = 0 & \text{in } (\Omega \setminus \overline{D}_k) \times (0, T), \\ \partial_t \theta_k - \kappa_0 \Delta \theta_k + a \cdot \nabla \theta_k + u_k \cdot \nabla c = 0 & \text{in } (\Omega \setminus \overline{D}_k) \times (0, T), \\ u_k = 0, \quad \theta_k = 0 & \text{on } \partial(\Omega \setminus \overline{D}_k) \times (0, T), \end{cases}$$

- $\nu_0 > 0$, $g \in \mathbb{R}^d$, $\kappa_0 > 0$, $a, b \in L^{\infty}(\Omega)^d$, $c \in L^{\infty}(\Omega)$.
- Assume

$$\sigma(u_1, p_1) \cdot \nu = \sigma(u_2, p_2) \cdot \nu \text{ and } \frac{\partial \theta_1}{\partial \nu} = \frac{\partial \theta_2}{\partial \nu} \text{ on } \gamma \times (0, T),$$
$$\Longrightarrow D_1 = D_2.$$

Our work: "Uniqueness in determining multidimensional domains with unknown initial data". J. Apraiz, A. Doubova, E. Fernández-Cara, M. Yamamoto. Inverse Problems (2025).