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Introduction General ideas

General ideas

Geometric inverse problems:

One interest: find causes for an observed effect → identification or
reconstruction.

Great development → relevant for applications: elastography and medical
imaging, seismology, fluid mechanics, traffic models, finances...

Why study uniqueness?

Well-posed in the sense of Hadamard (1902): existence, uniqueness and
stability.

If one of those conditions is not satisfied ⇒ problem is ill-posed.

Majority of IP are not well-posed.
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Introduction Our background

Our background

“Uniqueness and numerical reconstruction for inverse problems dealing
with interval size search”,

“Some Inverse Problems for the Burgers Equation and Related Systems”:

(2021) [Apraiz, Cheng, Doubova, Fernández-Cara, Yamamoto].

1D heat, wave, Burgers and related equations.

Goal: find the size of the spatial interval from some appropriate boundary
observations.

Uniqueness sensitive to boundary or initial data.
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Introduction Purpose of the new work

Purpose of the new work

Geometric inverse problems −→ linear parabolic systems (unknown
initial data and coefficients) with non-homogeneous part f (x , t) satisfying
some specific assumptions.

Goals:

Identify a subdomain within a multidimensional set Ω ⊂ Rd (d ≥ 2).

Establish uniqueness results through observations on a part of the
boundary or in an interior domain.

Derive information about the initial data.

Main tools: unique continuation, time analyticity of the solutions and
semigroup theory.
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Introduction Related works

Some related works

Detecting cavities by electrostatic boundary measurements (2002)
[Alessandrini, Morassi, Roset].

Identification of inmersed obstacle via boundary measurements (2005)
[Alvarez, Conca, Friz, Kavian, Ortega].

A geometric inverse problem for the Boussinesq system (2006)
[Doubova, Fernández-Cara, González-Burgos, Ortega].

Introduction to Inverse Problems for Evolution Equations: Stability and
Uniqueness by Carleman Estimates (2025) [Yamamoto].
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Determining multidimensional domains Setting up the problem (same coefficients)

Setting up the problem (same coefficients) I

Ω ⊂ Rd (d ≥ 2) and D1,D2 ⊂⊂ Ω.

For k = 1, 2, 
∂tuk +Auk = f (x , t) in (Ω\Dk )× (0,T ),

uk = 0 on ∂Dk × (0,T ),

uk = g(x , t) on ∂Ω× (0,T ),

(1)

where f ̸≡ 0 is an external source, g ̸≡ 0 is a boundary input in (0,T ) and

Av(x) := −
d∑

i,j=1

∂i(aij(x)∂jv(x)) +
d∑

j=1

bj(x)∂jv(x) + c(x)v(x).
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Determining multidimensional domains Setting up the problem (same coefficients)

Setting up the problem (same coefficients) II

Assume: aij = aji in C1(Ω), bj and c in L∞(Ω), f ∈ L2(Ω× (0,T )),
g ∈ L2(0,T ;H3/2(∂Ω)), c(x) ≥ c0 > 0 in Ω for a constant c0 sufficiently
large, and ∃ α > 0 :

d∑
i,j=1

aij(x)ξiξj ≥ α|ξ|2 ∀ ξ ∈ Rd , a.e. in Ω. (2)

Observe: initial values of u1 and u2 are not specified.
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Determining multidimensional domains Setting up the problem (same coefficients)

Setting up the problem (same coefficients) III

For k = 1, 2, linear operators Ak : D(Ak ) → L2(Ω\Dk ), with

D(Ak ) := {v ∈ H1
0 (Ω\Dk ) : Av ∈ L2(Ω\Dk )}

and
(Ak v)(x) := Av(x) a.e. in Ω\Dk

for all v ∈ D(Ak ).

Conormal derivative associated to the coefficients aij :

∂v
∂νA

:=
d∑

i,j=1

aij∂iv νj

(ν = ν(x) outward unit normal vector at points x ∈ ∂Ω).
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Determining multidimensional domains Setting up the problem (same coefficients)

Setting up the problem (same coefficients) IV

Question Q1

γ ⊂ ∂Ω nonempty and open.

u1 and u2 weak solutions to (1) corresponding to D1 and D2 (∀k ∈ {1, 2},
uk ∈ L2(0,T ;H1

0 (Ω \ Dk )) and satisfy (1) in the distributional sense).

Does
∂u1

∂νA
=

∂u2

∂νA
on γ × (0,T ) =⇒ D1 = D2?
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Determining multidimensional domains Main results (same coefficients)

Main results (same coefficients) I

Assumptions for f :

f , ∂t f , . . . , ∂m
t f ∈ L2(Ω× (0,T )) for some m ≥ 0 (3)

∃ t0, t1, t2 with 0 < t0 < t1 < t2 ≤ T such that

∂m
t f (x , t)=

{
a1f0(x) + r1(x , t) for t0 < t < t1,
a2f0(x) + r2(x , t) for t1 < t < t2,

where r1 : (t0, t1] → L2(Ω) is analytic, r2 ∈ L2(Ω× (t1, t2)),

a1, a2 ∈ R, f0 ∈ L2(Ω) and a1f0(x) ̸≡ a2f0(x).

(4)

Assumptions on r1: ∃ ε > 0 such that r1 can be extended to an analytical
function in (t0, t1 + ε).
f0 ̸≡ 0 and a1 ̸= a2.

Assumptions for g:
It’s independent of t and g ∈ H3/2(∂Ω).
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Determining multidimensional domains Main results (same coefficients)

Main results (same coefficients) II

Theorem (1 - Answer to Q1)

Let u1 and u2 be solutions to (1) respectively corresponding to the simply
connected open sets D1 and D2. Suppose that f satisfies (3), (4) and
moreover the functions f0, r1 and r2 in (4) satisfy{

f0(x) = 0 in D1 ∪ D2, r1(x , t) = 0 in (D1 ∪ D2)× (t0, t1)
and r2(x , t) = 0 in (D1 ∪ D2)× (t1, t2).

(5)

Then the answer to Q1 is yes. Moreover, u1(· , 0) = u2(· , 0) in Ω \ (D1 ∪ D2).
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Determining multidimensional domains Conclusions and other cases (same coefficients)

Conclusions and other cases (same coefficients) I

Answers for Q1 in other cases:

1 f (x , t) = f0(x)µ(t), where{
f0 ∈ L2(Ω), f0(x) = 0 in D1 ∪ D2 and f0 ̸≡ 0,

µ is piecewise polynomial and µ ̸∈ Cm([0,T ]) for some m ≥ 0.

=⇒ uniqueness for Q1.

2 f ≡ 0 and g ̸≡ 0.
g(x , t) = g0(x)µ(t) for all (x , t) ∈ ∂Ω× (0,T ), where g0 ∈ H3/2(∂Ω) and

µ(t) =
{

a1t , if 0 < t < t1,
a2(t − t1) + a1t1, if t1 < t < T

for some a1, a2 ∈ R with a1 ̸= a2 and some t1 with 0 < t1 < T .

=⇒ uniqueness for Q1.

Jone Apraiz Geometric IP Sevilla, September 4th, 2025 15 / 24



Determining multidimensional domains Conclusions and other cases (same coefficients)

Conclusions and other cases (same coefficients) II

3 f ≡ 0 and g ̸≡ 0 and

uk (x , 0) = 0 in Ω \ Dk for k = 1, 2. (6)

=⇒ uniqueness for Q1.

4 f ≡ 0 and g ̸≡ 0 and (6) is not satisfied =⇒ uniqueness can fail for Q1
(Counterexample).

5 (6), f ̸≡ 0 and g ≡ 0 =⇒ uniqueness can fail for Q1

6 (6), g ≡ 0 and f (x , t) = f0(x)µ(t) with a smooth µ =⇒ uniqueness for Q1:

Proposition

Let us assume that f (x , t) = f0(x)µ(t) a.e. with{
f0 ∈ L2(Ω), Supp f0 ⊂ Ω \ (D1 ∪ D2) and f0 ̸≡ 0,
µ ∈ C1([0,T ]) and µ ̸≡ 0

and g ≡ 0. Also, let us assume that (6) holds. Then, the answer to Q1 is yes.
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Determining multidimensional domains Setting up the problem (different coefficients)

Setting up the problem (different coefficients) I

Ω ⊂ Rd (d ≥ 2) and D1,D2 ⊂⊂ Ω.

For k = 1, 2,

Ak v(x) := −
d∑

i,j=1

∂i(ak
ij (x)∂jv(x)) +

d∑
j=1

bk
j (x)∂jv(x) + ck (x)v(x)

Assume: ak
ij = ak

ji ∈ C1(Ω), bk
j , c

k ∈ L∞(Ω) given for k = 1, 2, with the ak
ij

satisfying (2) and the ck satisfying ck (x) ≥ c0 > 0 a.e. in Ω for c0
sufficiently large.
Operators Pk : D(Pk ) → L2(Ω\Dk ) as before:

D(Pk ) := {v ∈ H1
0 (Ω\Dk ) : Ak v ∈ L2(Ω\Dk )}

and
(Pk v)(x) := Ak v(x) a.e. in Ω\Dk , ∀ v ∈ D(Pk ).
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Determining multidimensional domains Setting up the problem (different coefficients)

Setting up the problem (different coefficients) II

Question Q2

ω ⊂⊂ Ω \ (D1 ∪ D2) nonempty and open.

uk a weak solution to
∂tuk +Ak uk = f (x , t) in (Ω\Dk )× (0,T ),

uk = 0 on ∂Dk × (0,T ),

uk = g(x , t) on ∂Ω× (0,T )

(7)

for k = 1, 2.

Does u1 = u2 in ω×(0,T ) =⇒ D1 = D2?
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Determining multidimensional domains Main results (different coefficients)

Main results (different coefficients) I

Theorem (2 - Answer to Q2)

Let ω, D1 and D2 be as above and let uk be a weak solution to (7) for k = 1, 2.
Assume that f satisfies (3), (4) and moreover the functions f0, r1 and r2 in (4)
satisfy{

f0(x) = 0 in D1 ∪ D2 ∪ ω, r1(x , t) = 0 in (D1 ∪ D2 ∪ ω)× (t0, t1)
and r2(x , t) = 0 in (D1 ∪ D2 ∪ ω)× (t1, t2).

Also, assume that

P1P2v = P2P1v ∀v ∈ C∞
0 (Ω \ (D1 ∪ D2)).

Then the answer to Q2 is yes.
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Work in progress and open problems

Work in progress and open problems I

1 Work in progress: Reconstruction, same coefficients:

Let γ ⊂ ∂Ω be a nonempty open subboundary and u a weak solution to{
∂tu +Au = f (x , t) in (Ω\D)× (0,T ),

u = 0 on ∂(Ω\D)× (0,T ),

for some nonempty simply connected open set D ⊂⊂ Ω. Assume that

∂u
∂νA

= β on γ×(0,T ).

Can we find D (and u|t=0) from f and β?
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Work in progress and open problems

Work in progress and open problems II

Reformulation of the reconstruction problem:Minimize
1
2

∥∥∥∥ ∂u
∂νA

− β

∥∥∥∥2

X

Subject to D ∈ B, u0 ∈ L2(Ω \ D), u solves (8),

where β is given, the admissible class of subdomains B and the Hilbert
space X are appropriately chosen and:

∂tu +Au = f (x , t) in Ω\D × (0,T ),

u = 0 on ∂(Ω\D)× (0,T ),

u|t=0 = u0 in Ω\D.

(8)

Numerical resolution −→ method of fundamental solutions.

Useful: “Some new results for geometric inverse problems with the method
of fundamental solutions” (2021) [Carvalho, Doubova, Fernández-Cara,
Rocha de Faria].
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Work in progress and open problems

Work in progress and open problems III

2 Similar results for other equations:
2.1 Quasi-Stokes system (linear parabolic): for k = 1, 2, (uk , pk ) solutions to

∂tuk −ν0∆uk +(a · ∇)uk +(uk · ∇)b+∇pk = f (x , t) in (Ω\Dk )×(0,T ),

∇ · uk = 0 in (Ω\Dk )×(0,T ),

uk = 0 on ∂(Ω\Dk )×(0,T ).

ν0 > 0, a, b ∈ L∞(Ω)d , and the components of f satisfy (3)–(5).
Notation:

σ(u, p) := −p Id. + 2ν0 e(u), where e(u) :=
1
2
(∇u + (∇u)t )

Assume
σ(u1, p1) · ν = σ(u2, p2) · ν on γ×(0,T ).

=⇒ D1 = D2.
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Work in progress and open problems

Work in progress and open problems IV

2.2 Linearized Boussinesq systems: for k = 1, 2 (uk , pk , θk ) satisfies

∂tuk −ν0∆uk +(a·∇)uk +(uk ·∇)b+∇pk =θk g+f (x , t) in (Ω\Dk )×(0,T ),

∇ · uk = 0 in (Ω\Dk )×(0,T ),

∂tθk − κ0∆θk + a · ∇θk + uk · ∇c = 0 in (Ω\Dk )×(0,T ),

uk = 0, θk = 0 on ∂(Ω\Dk )×(0,T ),

ν0 > 0, g ∈ Rd , κ0 > 0, a, b ∈ L∞(Ω)d , c ∈ L∞(Ω).
Assume

σ(u1, p1) · ν = σ(u2, p2) · ν and
∂θ1

∂ν
=

∂θ2

∂ν
on γ×(0,T ),

=⇒ D1 = D2.

+ Our work: “Uniqueness in determining multidimensional domains with
unknown initial data” . J. Apraiz, A. Doubova, E. Fernández-Cara, M.
Yamamoto. Inverse Problems (2025).
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