Attractors for a class of impulsive systems

Everaldo de Mello Bonotto

Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

Workshop on PDEs and Control (PKM-60)

September 3, 2025

It is well known that to understand the asymptotic behavior of evolution equations the notion of attractor plays a central role.

Attractor: a compact set which satisfies an invariance property and that attracts (in some sense) a class of subsets of the phase space in which the equation is stated.

$$\bullet \quad \begin{array}{ccc}
\pi \colon X \times \mathbb{R}_+ & \to & X \\
(x,t) & \mapsto & \pi(x,t)
\end{array}$$
 flow

 $\begin{array}{ccc}
x & & (x,t) \\
 & & & \\
\end{array}$ • A attractor

$$\begin{array}{cccc} \pi\colon X\times \mathbb{R}_+ & \to & X \\ (x,t) & \mapsto & \pi(x,t) \end{array} \quad \mathsf{flow}$$

$\mathcal A$ attractor

$$\begin{array}{cccc} \pi\colon X\times\mathbb{R}_+ & \to & X \\ (x,t) & \mapsto & \pi(x,t) \end{array} \quad \mathsf{flow}$$

attractor

Does $\{x_1^+, x_2^+, x_3^+, \ldots\}$ generate a discrete dynamical system? Attractor \hat{A} ?

If the attractors \mathcal{A} , $\tilde{\mathcal{A}}$, $\hat{\mathcal{A}}$ exist, are they related?

E. M. Bonotto, M. C. Bortolan, A. N. Carvalho, and R. Czaja, Global attractors for impulsive dynamical systems - a precompact approach, J. Differential Equations, 259 (2015), 2602–2625.

E. M. Bonotto, and J. M. Uzal, Global attractors for a class of discrete dynamical systems.J. Dynamics and Differential Equations, (2024). https://doi.org/10.1007/s10884-024-10356-9

Summary

- Impulsive Dynamical Systems
- 2 Global attractors for Impulsive Dynamical Systems
- A class of Discrete Dynamical Systems
- 4 Relationship among the attractors A, \tilde{A} and \hat{A} .

Continuous Semigroups

 \bullet (X, d) is a complete metric space.

Definition 1.1

A continuous semigroup in X is a family of maps $\{\pi(t): t \geq 0\} \subset C(X)$, indexed on \mathbb{R}_+ , satisfying:

- $\pi(0) = I$;
- $\pi(t+s) = \pi(t)\pi(s)$ for all $t, s \in \mathbb{R}_+$;
- the map $\mathbb{R}_+ \times X \ni (t,x) \mapsto \pi(t)x$ is continuous.

For each $x \in X$, consider the map $\pi_x \colon \mathbb{R}_+ \to X$ given by $\pi_x(t) = \pi(t)x$ called the **trajectory** of x.

Continuous Semigroups

 \bullet (X, d) is a complete metric space.

Definition 1.1

A continuous semigroup in X is a family of maps $\{\pi(t): t \geq 0\} \subset C(X)$, indexed on \mathbb{R}_+ , satisfying:

- $\pi(0) = I$;
- $\pi(t+s) = \pi(t)\pi(s)$ for all $t, s \in \mathbb{R}_+$;
- the map $\mathbb{R}_+ \times X \ni (t,x) \mapsto \pi(t)x$ is continuous.

For each $x \in X$, consider the map $\pi_x \colon \mathbb{R}_+ \to X$ given by $\pi_x(t) = \pi(t)x$ called the **trajectory** of x.

Impulsive Dynamical Systems

Definition 1.2

An impulsive dynamical system (IDS)

$$(X, \pi, M, I)$$

consists of:

- a continuous semigroup $\{\pi(t): t \geq 0\}$ in X;
- ullet a non-empty closed subset M of X (called the impulsive set) such that

for every
$$x \in M$$
, there is $\epsilon_x > 0$ such that $\bigcup_{t \in (0, \epsilon_x)} \{\pi(t)x\} \cap M = \emptyset$;

• a continuous function $I: M \to X$ (called the impulse function).

Impact Function ϕ

The **impact function** $\phi \colon X \to (0, \infty]$ is defined by

$$\phi(x) = \begin{cases} s, & \text{if } \pi(s)x \in M \text{ and } \pi(t)x \notin M \text{ for } 0 < t < s, \\ \infty, & \text{if } \pi(t)x \notin M \text{ for all } t > 0. \end{cases}$$

Impulsive semitrajectory of $x \in X$

$$\tilde{\pi}_{\mathsf{x}} : \quad [0, T(\mathsf{x})) \quad \to \quad X \\
 t \quad \mapsto \quad \tilde{\pi}_{\mathsf{x}}(t)$$

$$\phi(x) = \infty$$
 and $\tilde{\pi}_x(t) = \pi(t)x$ for all $t \ge 0$.

$$\phi(x) < \infty \quad ext{and} \quad ilde{\pi}_{\scriptscriptstyle X}(t) = \left\{ egin{array}{ccc} \pi(t)x & ext{if} & 0 \leq t < \phi(x) \\ x_1^+ & ext{if} & t = \phi(x). \end{array}
ight.$$

• We shall assume that $\tilde{\pi}_x$ is defined on $[0,\infty)$ for every $x \in X$.

- We shall assume that $\tilde{\pi}_x$ is defined on $[0, \infty)$ for every $x \in X$.
- Consider the family $\{\tilde{\pi}(t): t \geq 0\}$

- We shall assume that $\tilde{\pi}_x$ is defined on $[0, \infty)$ for every $x \in X$.
- Consider the family $\{\tilde{\pi}(t): t \geq 0\}$

$$ilde{\pi}(t) \colon egin{array}{ccc} X &
ightarrow & X \ x & \mapsto & ilde{\pi}(t)x = ilde{\pi}_{ imes}(t) \end{array}$$

Proposition 1.3

Let (X, π, M, I) be an IDS. Then:

- (i) $\tilde{\pi}(0)x = x$ for all $x \in X$;
- (ii) $\tilde{\pi}(t)\tilde{\pi}(s)x = \tilde{\pi}(t+s)x$ for all $x \in X$ and $t, s \ge 0$

Behavior of $\tilde{\pi}$

Question: Is it possible to obtain the convergence property $\tilde{\pi}(\phi(x))x_n \to \tilde{\pi}(\phi(x))x$?

Behavior of $\tilde{\pi}$

Question: Is it possible to obtain the convergence property $\tilde{\pi}(\phi(x))x_n \to \tilde{\pi}(\phi(x))x$?

Note that $x_n \stackrel{n \to \infty}{\longrightarrow} x$ but

$$\tilde{\pi}(\phi(x))x_n \rightarrow \tilde{\pi}(\phi(x))x = x_1^+.$$

Behavior of $\tilde{\pi}$

Question: Is it possible to obtain the convergence property $\tilde{\pi}(\phi(x))x_n \to \tilde{\pi}(\phi(x))x$?

Note that $x_n \stackrel{n \to \infty}{\longrightarrow} x$ but

$$\tilde{\pi}(\phi(x))x_n \rightarrow \tilde{\pi}(\phi(x))x = x_1^+.$$

We shall assume that ϕ is continuous on $X \setminus M$.

Ciesielski, K.: On semicontinuity in impulsive dynamical systems, Bull. Polish Acad. Sci. Math., 52 (2004), 71-80.

Bonotto, E. M., Kalita, P.: On Attractors of Generalized Semiflows with Impulses, J. Geom. Anal., 30 (2020), 1412–1449.

We shall assume that ϕ is continuous on $X \setminus M$.

Ciesielski, K.: On semicontinuity in impulsive dynamical systems, Bull. Polish Acad. Sci. Math., 52 (2004), 71-80.

Bonotto, E. M., Kalita, P.: On Attractors of Generalized Semiflows with Impulses, J. Geom. Anal., 30 (2020), 1412–1449.

Lemma 1.4

Let $x \in X \setminus M$ and $t \ge 0$. Assume that $\{x_n\}_{n \in \mathbb{N}} \subset X$ is a sequence such that $x_n \stackrel{n \to \infty}{\longrightarrow} x$. Then there is a sequence $\{\beta_n\}_{n \in \mathbb{N}} \subset \mathbb{R}_+$ such that $\beta_n \stackrel{n \to \infty}{\longrightarrow} 0$ and

$$\tilde{\pi}(t+\beta_n)x_n \stackrel{n\to\infty}{\longrightarrow} \tilde{\pi}(t)x.$$

• $A \subset X$ is positively π -invariant if $\pi^+(A) \subset A$.

- $A \subset X$ is positively π -invariant if $\pi^+(A) \subset A$.
- $A \subset X$ is positively $\tilde{\pi}$ -invariant if $\tilde{\pi}^+(A) \subset A$.

- $A \subset X$ is positively π -invariant if $\pi^+(A) \subset A$.
- $A \subset X$ is positively $\tilde{\pi}$ -invariant if $\tilde{\pi}^+(A) \subset A$.

If A is positively π -invariant then \overline{A} is positively π -invariant.

- $A \subset X$ is **positively** π -invariant if $\pi^+(A) \subset A$.
- $A \subset X$ is positively $\tilde{\pi}$ -invariant if $\tilde{\pi}^+(A) \subset A$.

If A is positively π -invariant then \overline{A} is positively π -invariant. But, this result is not valid in general for impulsive systems.

- $A \subset X$ is **positively** π -invariant if $\pi^+(A) \subset A$.
- $A \subset X$ is positively $\tilde{\pi}$ -invariant if $\tilde{\pi}^+(A) \subset A$.

If A is positively π -invariant then \overline{A} is positively π -invariant. But, this result is not valid in general for impulsive systems.

In fact, let (\mathbb{R}, π, M, I) be an IDS given by $\pi(t)x = x + t$, for $(x, t) \in \mathbb{R} \times \mathbb{R}_+$, $M = \{1\}$ and I(1) = 0.

- $A \subset X$ is **positively** π -invariant if $\pi^+(A) \subset A$.
- $A \subset X$ is **positively** $\tilde{\pi}$ -invariant if $\tilde{\pi}^+(A) \subset A$.

If A is positively π -invariant then \overline{A} is positively π -invariant. But, this result is not valid in general for impulsive systems.

In fact, let (\mathbb{R}, π, M, I) be an IDS given by $\pi(t)x = x + t$, for $(x, t) \in \mathbb{R} \times \mathbb{R}_+$, $M = \{1\}$ and I(1) = 0.

The set A=[0,1) is positively $\tilde{\pi}$ -invariant, but $\overline{A}=[0,1]$ is not positively $\tilde{\pi}$ -invariant.

$$\tilde{\pi}^+(\overline{A}) = [0, \infty).$$

- $A \subset X$ is **positively** π -invariant if $\pi^+(A) \subset A$.
- $A \subset X$ is positively $\tilde{\pi}$ -invariant if $\tilde{\pi}^+(A) \subset A$.

If A is positively π -invariant then \overline{A} is positively π -invariant. But, this result is not valid in general for impulsive systems.

In fact, let (\mathbb{R}, π, M, I) be an IDS given by $\pi(t)x = x + t$, for $(x, t) \in \mathbb{R} \times \mathbb{R}_+$, $M = \{1\}$ and I(1) = 0.

The set A = [0,1) is positively $\tilde{\pi}$ -invariant, but $\overline{A} = [0,1]$ is not positively $\tilde{\pi}$ -invariant.

$$\tilde{\pi}^+(\overline{A}) = [0, \infty).$$

Lemma 1.5

Let $B \subset X$ be a positively $\tilde{\pi}$ -invariant set. Then $\overline{B} \setminus M$ is positively $\tilde{\pi}$ -invariant.

- $A \subset X$ is **positively** π -invariant if $\pi^+(A) \subset A$.
- $A \subset X$ is positively $\tilde{\pi}$ -invariant if $\tilde{\pi}^+(A) \subset A$.

If A is positively π -invariant then \overline{A} is positively π -invariant. But, this result is not valid in general for impulsive systems.

In fact, let (\mathbb{R}, π, M, I) be an IDS given by $\pi(t)x = x + t$, for $(x, t) \in \mathbb{R} \times \mathbb{R}_+$, $M = \{1\}$ and I(1) = 0.

The set A = [0,1) is positively $\tilde{\pi}$ -invariant, but $\overline{A} = [0,1]$ is not positively $\tilde{\pi}$ -invariant.

$$\tilde{\pi}^+(\overline{A}) = [0, \infty).$$

Lemma 1.5

Let $B \subset X$ be a positively $\tilde{\pi}$ -invariant set. Then $\overline{B} \setminus M$ is positively $\tilde{\pi}$ -invariant.

Summary

- Impulsive Dynamical Systems
- Global attractors for Impulsive Dynamical Systems
- A class of Discrete Dynamical Systems
- 4 Relationship among the attractors \mathcal{A} , $\tilde{\mathcal{A}}$ and $\hat{\mathcal{A}}$.

Definition 2.1

A subset $A \subset X$ will be called a **global attractor** for the semigroup $\{\pi(t) : t \geq 0\}$ if it satisfies the following conditions:

- (i) A is compact;
- (ii) A is π -invariant $(\pi(t)A = A$ for all $t \in \mathbb{R}_+)$;
- (iii) $\mathcal{A} \pi$ -attracts bounded subsets of X $\left(\lim_{t\to\infty}\mathrm{d}_H(\pi(t)B,\mathcal{A})=0,\ \forall\, B\in\mathcal{B}(X)\right).$

Definition 2.1

A subset $A \subset X$ will be called a **global attractor** for the semigroup $\{\pi(t) : t \geq 0\}$ if it satisfies the following conditions:

- (i) A is compact;
- (ii) A is π -invariant $(\pi(t)A = A$ for all $t \in \mathbb{R}_+)$;
- (iii) $\mathcal{A} \pi$ -attracts bounded subsets of X $\left(\lim_{t\to\infty}\mathrm{d}_H(\pi(t)B,\mathcal{A})=0,\ \forall\, B\in\mathcal{B}(X)\right).$

Definition 2.2

A subset $\tilde{A} \subset X$ will be called a **global attractor** for the IDS (X, π, M, I) if it satisfies the following conditions:

- (i) $\tilde{\mathcal{A}}$ is precompact and $\tilde{\mathcal{A}} = \overline{\tilde{\mathcal{A}}} \setminus M$;
- (ii) $\tilde{\mathcal{A}}$ is $\tilde{\pi}$ -invariant $(\tilde{\pi}(t)\tilde{\mathcal{A}}=\tilde{\mathcal{A}}$ for all $t\in\mathbb{R}_+)$;
- $\text{(iii)} \ \ \tilde{\mathcal{A}} \ \tilde{\pi} \text{attracts bounded subsets of } X \quad \ \left(\lim_{t \to \infty} \mathrm{d}_H(\tilde{\pi}(t)B, \tilde{\mathcal{A}}) = 0, \ \ \forall \, B \in \mathcal{B}(X) \right).$
- ullet If $ilde{\mathcal{A}}$ exists, then it is uniquely determined.
- If $M = \emptyset$, then the definitions coincide.

Definition 2.3

An IDS (X, π, M, I) is called **asymptotically compact**, if given a set $B \in \mathcal{B}(X)$, a sequence $\{t_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ with $t_n \to \infty$, and a sequence $\{x_n\}_{n\in\mathbb{N}} \subset B$, then the sequence $\{\tilde{\pi}(t_n)x_n\}_{n\in\mathbb{N}}$ possesses a convergent subsequence in X.

Definition 2.3

An IDS (X, π, M, I) is called **asymptotically compact**, if given a set $B \in \mathcal{B}(X)$, a sequence $\{t_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ with $t_n \to \infty$, and a sequence $\{x_n\}_{n\in\mathbb{N}} \subset B$, then the sequence $\{\tilde{\pi}(t_n)x_n\}_{n\in\mathbb{N}}$ possesses a convergent subsequence in X.

Definition 2.4

An IDS (X, π, M, I) is called **dissipative**, if there exists a set $B_0 \in \mathcal{B}(X)$, called absorbing set, such that for every $B \in \mathcal{B}(X)$ there exists a time $T_B \geq 0$ such that $\tilde{\pi}(t)B \subset B_0$ for all $t \geq T_B$.

Definition 2.3

An IDS (X, π, M, I) is called **asymptotically compact**, if given a set $B \in \mathcal{B}(X)$, a sequence $\{t_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$ with $t_n \to \infty$, and a sequence $\{x_n\}_{n\in\mathbb{N}} \subset B$, then the sequence $\{\tilde{\pi}(t_n)x_n\}_{n\in\mathbb{N}}$ possesses a convergent subsequence in X.

Definition 2.4

An IDS (X, π, M, I) is called **dissipative**, if there exists a set $B_0 \in \mathcal{B}(X)$, called absorbing set, such that for every $B \in \mathcal{B}(X)$ there exists a time $T_B \geq 0$ such that $\tilde{\pi}(t)B \subset B_0$ for all $t \geq T_B$.

Theorem 2.5

An IDS (X, π, M, I) admits a global attractor \tilde{A} if and only if it is asymptotically compact and dissipative.

$$\tilde{\mathcal{A}} = \tilde{\omega}(B_0) \backslash M$$
,

where
$$\tilde{\omega}(B_0) = \bigcap_{t>0} \overline{\bigcup_{\tau>t}} \tilde{\pi}(\tau)B_0$$
.

Summary

- Impulsive Dynamical Systems
- 2 Global attractors for Impulsive Dynamical Systems
- 3 A class of Discrete Dynamical Systems
- 4 Relationship among the attractors \mathcal{A} , $\tilde{\mathcal{A}}$ and $\hat{\mathcal{A}}$.

Assume that:

- (H1) ϕ is continuous on $X \setminus M$;
- (H2) there exists $z \in I(M)$ such that $\phi(z_k^+) < \infty$ for all $k \in \mathbb{N}$;
- (H3) $I(M) \cap M = \emptyset$.

Assume that:

- (H1) ϕ is continuous on $X \setminus M$;
- (H2) there exists $z \in I(M)$ such that $\phi(z_k^+) < \infty$ for all $k \in \mathbb{N}$;
- (H3) $I(M) \cap M = \emptyset$.

Consider the set

$$\hat{X} = \{x \in I(M) \colon \phi(x_k^+) < \infty \text{ for all } k \in \mathbb{N}\}$$

$$g(x) = I(\pi(\phi(x))x). \tag{1}$$

Assume that:

- (H1) ϕ is continuous on $X \setminus M$;
- (H2) there exists $z \in I(M)$ such that $\phi(z_k^+) < \infty$ for all $k \in \mathbb{N}$;
- (H3) $I(M) \cap M = \emptyset$.

Consider the set

$$\hat{X} = \{x \in I(M) \colon \phi(x_k^+) < \infty \text{ for all } k \in \mathbb{N}\}$$

and the map $g: \hat{X} \to \hat{X}$ given by

$$g(x) = I(\pi(\phi(x))x). \tag{1}$$

• Condition (H2) $\Longrightarrow \hat{X} \neq \emptyset$.

Assume that:

- (H1) ϕ is continuous on $X \setminus M$;
- (H2) there exists $z \in I(M)$ such that $\phi(z_k^+) < \infty$ for all $k \in \mathbb{N}$;
- (H3) $I(M) \cap M = \emptyset$.

Consider the set

$$\hat{X} = \{x \in I(M) \colon \phi(x_k^+) < \infty \text{ for all } k \in \mathbb{N}\}$$

$$g(x) = I(\pi(\phi(x))x). \tag{1}$$

- Condition (H2) $\Longrightarrow \hat{X} \neq \emptyset$.
- The map g is continuous on \hat{X} .

Assume that:

- (H1) ϕ is continuous on $X \setminus M$;
- (H2) there exists $z \in I(M)$ such that $\phi(z_k^+) < \infty$ for all $k \in \mathbb{N}$;
- (H3) $I(M) \cap M = \emptyset$.

Consider the set

$$\hat{X} = \{x \in I(M) \colon \phi(x_k^+) < \infty \text{ for all } k \in \mathbb{N}\}$$

$$g(x) = I(\pi(\phi(x))x). \tag{1}$$

- Condition (H2) $\Longrightarrow \hat{X} \neq \emptyset$.
- The map g is continuous on \hat{X} .
- (\hat{X}, g) defines a discrete dynamical system on \hat{X} :

$$g^{0}(x) = x$$
 and $g^{n}(x) = x_{n}^{+}$ for all $x \in \hat{X}, n \in \mathbb{N}$.

Assume that:

- (H1) ϕ is continuous on $X \setminus M$;
- (H2) there exists $z \in I(M)$ such that $\phi(z_k^+) < \infty$ for all $k \in \mathbb{N}$;
- (H3) $I(M) \cap M = \emptyset$.

Consider the set

$$\hat{X} = \{x \in I(M) \colon \phi(x_k^+) < \infty \text{ for all } k \in \mathbb{N}\}$$

$$g(x) = I(\pi(\phi(x))x). \tag{1}$$

- Condition (H2) $\Longrightarrow \hat{X} \neq \emptyset$.
- The map g is continuous on \hat{X} .
- (\hat{X}, g) defines a discrete dynamical system on \hat{X} :

$$g^{0}(x) = x$$
 and $g^{n}(x) = x_{n}^{+}$ for all $x \in \hat{X}, n \in \mathbb{N}$.

Definition 3.1

A subset $\hat{B} \subset \hat{X}$ is said to be:

- (i) positively g-invariant w.r.t. (\hat{X}, g) , if $g(\hat{B}) \subset \hat{B}$;
- (ii) negatively g-invariant w.r.t. (\hat{X}, g) , if $g(\hat{B}) \supset \hat{B}$;
- (iii) g-invariant if it is both positively and negatively g-invariant w.r.t. (\hat{X}, g) .

Definition 3.2

The **omega limit set** of a subset $\hat{B} \subset \hat{X}$ is given by

$$\hat{\omega}(\hat{B}) = \{x \in \hat{X} : \text{ there exist sequences } \{x_k\}_{k \in \mathbb{N}} \subset \hat{B} \text{ and } \{n_k\}_{k \in \mathbb{N}} \subset \mathbb{N} \}$$

with $n_k \to \infty$ such that $g^{n_k}(x_k) \to x$.

Let $\mathcal{B}(\hat{X})$ denote the set of all bounded subsets from \hat{X} .

Definition 3.3

A set $\hat{A} \subset \hat{X}$ is called a **discrete global attractor** for (\hat{X}, g) if:

- (i) $\hat{\mathcal{A}}$ is compact;
- (ii) $\hat{\mathcal{A}}$ is g-invariant;
- (iii) $d_H(g^n(\hat{B}), \hat{A}) \to 0$ for every $\hat{B} \in \mathcal{B}(\hat{X})$.

Let $\mathcal{B}(\hat{X})$ denote the set of all bounded subsets from \hat{X} .

Definition 3.3

A set $\hat{A} \subset \hat{X}$ is called a **discrete global attractor** for (\hat{X}, g) if:

- (i) $\hat{\mathcal{A}}$ is compact;
- (ii) $\hat{\mathcal{A}}$ is g-invariant;
- (iii) $d_{\mathrm{H}}(g^{n}(\hat{B}), \hat{A}) \to 0$ for every $\hat{B} \in \mathcal{B}(\hat{X})$.

Theorem 3.4

Assume that (X, π, M, I) satisfies conditions (H1)-(H3) and (\hat{X}, g) is asymptotically compact and bounded dissipative with absorbing set $\hat{\mathcal{B}}_0$. Then (\hat{X}, g) has a discrete global attractor $\hat{\mathcal{A}}$ given by $\hat{\mathcal{A}} = \hat{\omega}(\hat{\mathcal{B}}_0)$.

Summary

- Impulsive Dynamical Systems
- Global attractors for Impulsive Dynamical Systems
- A class of Discrete Dynamical Systems

Attractors \mathcal{A} , $\tilde{\mathcal{A}}$ and $\hat{\mathcal{A}}$

- semigroup $\{\pi(t): t \geq 0\}$ with global attractor \mathcal{A} .
- IDS (X, π, M, I) with global attractor \tilde{A} .

• DDS (\hat{X}, g) with discrete global attractor \hat{A} .

Attractors ${\cal A}$, $ilde{\cal A}$ and $\hat{\cal A}$

Example 1

Consider the system of differential equations

$$\begin{cases} x' = -x, \\ y' = -y, \end{cases}$$

in $X = \mathbb{R}^2$. In this simple example, $\mathcal{A} = \{(0,0)\}$.

- (a) If $M = \bigcup_{n \in \mathbb{N}} M_n$ with $M_n = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = n^2\}$, n = 1, 2, ..., and $I(x,y) = (x(1+\frac{1}{2n}), y(1+\frac{1}{2n}))$ for $(x,y) \in M_n$, n = 1, 2, ..., then the systems (X, π, M, I) and (\hat{X}, g) do not admit global attractors.
- (b) If $M = \bigcup_{n \in \mathbb{N}} M_n$ with $M_n = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = n^2\}$, n = 1, 2, ..., and $I(x, y) = (\frac{x}{2n}, \frac{y}{2n})$ for all $(x, y) \in M_n$, n = 1, 2, ... Then $\tilde{A} = A$ and $\hat{X} = \emptyset$.
- (c) If $M = \mathbb{R} \times \{1\}$ and $I(x,1) = (\tan^{-1}(x),2)$, $x \in \mathbb{R}$. Then $\hat{\mathcal{A}} = \{(0,2)\}$ and $\tilde{\mathcal{A}} = \{(0,y): 1 < y \leq 2\} \cup \{(0,0)\}$. Note that $\hat{X} = I(M) = (-\frac{\pi}{2}, \frac{\pi}{2}) \times \{2\}$. Moreover,

 $\tilde{\mathcal{A}} = \pi([0, \ln 2))\hat{\mathcal{A}} \cup \mathcal{A}.$

Attractors $\mathcal{A},\,\tilde{\mathcal{A}}$ and $\hat{\mathcal{A}}$

• $I(M) \cap M = \emptyset$

Proposition 4.1

Assume that $\{\pi(t): t \geq 0\}$ has a global attractor \mathcal{A} with $\mathcal{A} \cap M = \emptyset$ and (X, π, M, I) has a global attractor $\tilde{\mathcal{A}}$. Then $\mathcal{A} \subset \tilde{\mathcal{A}}$.

Attractors $\overline{\mathcal{A}}$, $\widetilde{\mathcal{A}}$ and $\widehat{\mathcal{A}}$

• $I(M) \cap M = \emptyset$

Proposition 4.1

Assume that $\{\pi(t): t \geq 0\}$ has a global attractor \mathcal{A} with $\mathcal{A} \cap M = \emptyset$ and (X, π, M, I) has a global attractor $\tilde{\mathcal{A}}$. Then $\mathcal{A} \subset \tilde{\mathcal{A}}$.

Proposition 4.2

Assume that (X, π, M, I) has a global attractor $\tilde{\mathcal{A}}$ and (\hat{X}, g) has a discrete global attractor $\hat{\mathcal{A}}$. Then $\hat{\mathcal{A}} \subset \tilde{\mathcal{A}}$.

Attractors \mathcal{A} , $\tilde{\mathcal{A}}$ and $\hat{\mathcal{A}}$

• $I(M) \cap M = \emptyset$

Proposition 4.1

Assume that $\{\pi(t)\colon t\geq 0\}$ has a global attractor $\mathcal A$ with $\mathcal A\cap M=\emptyset$ and (X,π,M,I) has a global attractor $\tilde{\mathcal A}$. Then $\mathcal A\subset \tilde{\mathcal A}$.

Proposition 4.2

Assume that (X, π, M, I) has a global attractor \tilde{A} and (\hat{X}, g) has a discrete global attractor \hat{A} . Then $\hat{A} \subset \tilde{A}$.

Theorem 4.3

Assume that $\{\pi(t)\colon t\geq 0\}$ admits a global attractor $\mathcal A$ with $\mathcal A\cap \mathcal M=\emptyset$, $(\hat X,g)$ has a global attractor $\hat{\mathcal A}$, $(X,\pi,\mathcal M,I)$ is dissipative and $\phi(x)<\infty$ for all $x\in I(\mathcal M)$. Then $(X,\pi,\mathcal M,I)$ admits a global attractor $\tilde{\mathcal A}$ given by

$$ilde{\mathcal{A}} = \mathcal{A} \cup \left(\bigcup_{\mathsf{a} \in \hat{\mathcal{A}}} \pi([\mathsf{0}, \phi(\mathsf{a}))) \mathsf{a} \right).$$

Consider the nonlinear reaction-diffusion initial boundary value problem

$$\begin{cases} u_t - \Delta u = f(u) & \text{for } (x,t) \in \Omega \times (0,\infty), \\ u(x,t) = 0, & \text{for } (x,t) \in \partial\Omega \times (0,\infty), \\ u(x,0) = u_0(x), & \text{for } x \in \Omega, \end{cases}$$
 (2)

where Ω is a bounded smooth domain of \mathbb{R}^n ($n \geq 2$) with smooth boundary and Δ is the Laplace operator in Ω . The nonlinearity $f: \mathbb{R} \to \mathbb{R}$ satisfies the growth and dissipative conditions:

- (a) $|f(t) f(s)| \le c|t s|$, for all $t, s \in \mathbb{R}$, where c > 0;
- (b) $\limsup_{|s|\to\infty} \frac{f(s)}{s} < \lambda_1$.

For each $u_0 \in L^2(\Omega)$, $\exists !$ solution u of (2) with $u \in C([0,\infty), L^2(\Omega))$ such that the map $u_0 \mapsto u(t)$ is continuous in $L^2(\Omega)$. Thus, the map $\pi(t) \colon L^2(\Omega) \to L^2(\Omega)$ given by

$$\pi(t)u_0=u(t)$$

defines a dynamical system $(L^2(\Omega), \pi)$ on $L^2(\Omega)$.

• The dynamical system $(L^2(\Omega), \pi)$ is dissipative with absorbing set

$$B_0 = \left\{ v \in L^2(\Omega) : \|v\|_2 \leq \frac{\rho_0 C|\Omega|}{\epsilon_0} \right\}, \quad \rho_0 > 1, \epsilon_0 > 0.$$

- $(L^2(\Omega), \pi)$ admits a global attractor A.
- Let $r_0 > \max\left\{1, \frac{2\rho_0 C|\Omega|}{\epsilon_0}\right\}$. Consider the set $M = \{v \in L^2(\Omega) : ||v||_2 = r_0\}$ and a continuous function $I: M \to L^2(\Omega)$.
- If $||I(z)||_2 < ||z||_2$ for all $z \in M$ then $\tilde{A} = A$ and \hat{A} does not exist.

The operator $-\Delta$ with the Dirichlet boundary conditions admits an orthonormal complete sequence of eigenfunctions $\{e_i\}_{i=1}^{\infty}$ in $L^2(\Omega)$ with corresponding eigenvalues $\{\lambda_i\}_{i=1}^{\infty}$ satisfying $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq \ldots, \ \lambda_n \to \infty$.

$$\pi(t)u_0=u(t)=\sum_{i=1}^{\infty}\alpha_i(t)e_i.$$

where $\alpha_i(t)$ (Fourier coefficient) satisfies the ODE $\alpha_i'(t) + \lambda_i \alpha_i(t) = (f(u(t)), e_i), i \in \mathbb{N}$.

• If $I(v) = v + 3r_0e_1$ for all $v \in M$, then

$$\tilde{\mathcal{A}} = \mathcal{A} \cup \left(\bigcup_{a \in \hat{\mathcal{A}}} \pi([0, \phi(a)))a\right).$$

Thank you for your attention!

¡Feliz cumpleaños, Kisko y Manolo!