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SIS MODEL RESULTS



SIS model: direct problem and inverse problem

Yx) 1

Bx) st
S+l

Direct problem: Given {8, v, So, lp} find {S, I} such that

S
St = AS = —B(X) g + (0L (x,) € Qr :== 2 x [0, T],
S
It — Al = B(x) S+i- ~(x)1, (x,t) € Qr,
vS n=V/-n=0, (x,t) e :=00Q x [0, T],
S(X, 0) = SO(X)7 I(X, 0) = IO(X)v X€E€Q,

Inverse problem: Given {Sy, Iy, S5(-, T), 1°°5(-, T)} find {B,~} such that {Sg -, I3~}
is the solution of a SIS model satisfying Sg (-, T) = S°(-,T) and Ig (-, T) =
IobS(_7 7).



Inverse problem results

The inverse problem for onedimensional and restrictive condition for the stability
result of a SIS model.
Xiang & Liu (2015)
The extension to the multidimensional case with a more general assumption for
the stability result.
Coronel, Huancas & Sepulveda (2019)
The extension to the multidimensional case with the infection force of the type
S""instead of SI/(S + /).
Coronel, Friz, Hess & Zegarra (2019)
The extension to the model of indirectly transmitted diseases model.
Coronel, Huancas & Sepulveda (2019)
The identification of diffusion when the diffusion is space dependent function.
A. Coronel, F. Huancas, I. Hess & A. Tello (2024)

Identification of reaction in a reaction-diffusion system for tumor growth.
PhD thesis of |. Hess ... . stay in Seville with collaboration of F. Guillén-Gonzaales



SIS model

The direct problem is reduced to: Given Sy, Iy, 3,~ find S, I such that

oS S/
E*AS—*B(X)S+I+’Y(X)L (X,t)eOT =Qx [OvT]v
ol S/
T —Alfﬁ(x)s_i_l —y(x)/, (x,t) € Qr,
vS-n=V/-n=0, (x,t) e M :=0Q x [0, T],
S(x,0) = So(x),  I(x,0) = h(x), X € Q.

The Inverse Problem is defined as follows: Given T > 0 and the set of functions
{So, Iy, S [°bs} defined on Q, find the functions B and ~ such that (S, /)(x, T) =
(893, 19bs)(x) for x € Q with (S, /) the solution of the forward problem.

The inverse problem may be recasting as the optimization problem
inf J(,v) subjectto (8,v) € Usg(2) and (S, /) solution of SIS model,

where J and U,y(Q2) are appropriately defined.



SIS model

We consider the admissible set U,4(€2) and the functional J : U,q(2) — R defined as
follows

Uag () = A(Q) N [HI/A1(Q) x HI9/AH (@)
I, 1= 5 [I186T) = 8% 1By + 16 ) = 512 )] + £ [IV81s gy + 1931y
with [[] the integer part function, I € R™ an appropriate regularization parameter and
A@) = {(8.7) € C*(@) x C*(@) = Ran(8) C [b,5] CI0, 1,

Ran(y) € [r,7] Cl0,1[, V8, Vy € @)},

where Ran(f) denotes the range of a function f. We note that U,y(Q2) = A(Q2) when
d = 1 and coincides with the admissible set considered by Xiang & Liu (2015).



SIS model

We consider the following set of assumptions:
(SIS0) The open bounded and convex set Q is such that 9Q is C'.
(SIS1) The initial conditions Sy and ky are belong to C?*(Q) and satisfy the
inequalities

So(X) >0, Ip(x) >0, / b(X)dx >0, So(x) + h(X) > 6o > 0,
Q

on €, for some positive constant ¢;
(SIS2) The observation functions S and /° are belong to L?(9).

We consider that the adjoint system to SIS model is given by

-2

oP _ i

ar TAP=ANE (P Q) (x,0) € Qr =02 x [0,T],
2

2 +aQ= (B()(S T v())(P Q), (x.1) € ar,

VP-n=VQ-n=0, (x,t) e :=0Q x [0, T],
P(x,T) = S(x,T) — 8°%5(x), Q(x,T)=1(x,T)—I°(x), xe€Q,

where (B,7) € Ug and (S, 1) is the corresponding solution of SIS model with (3,7)
instead of (8, v).



SIS model: Direct problem

Theorem

Consider that the hypotheses (SI1S0)-(SIS2) are satisfied. If (8, a) € C*(Q) x C*(Q),
the initial boundary value problem SIS admits a unique positive classical solution (S, I),
such that S and | are belong to C2+:1+/2(Qr) and also S and | are bounded on Q7,
forany given T € RT.

The existence and the uniqueness can be developed by the Shauder’s theory for parabolic
equations. Meanwhile, the positive behavior of the solution is a consequence of the
maximum principle.



SIS model

Theorem

Consider that the following hypotheses (SIS0)-(SIS3) are satisfied. Then,

(i) There exists at least one solution of optimization problem (IP).

(i) Let us consider (8,7) is the solution of IP and (S, 1) the corresponding solutions of
SIS with (8,7) instead of (8,~). Then, (P, Q) is bounded in L>(0, t; H*(Q)) for almost
all time t in0, T]. In particular (P, Q) is bounded in L (0, t; L>°(K2)) for almost all time
tin]o, T].

(i) Let us consider S, 1, 3,7, P and Q as is given in (ii). Then, the following inequality

. .81 e o
/OT[(ﬁ—ﬁ)sﬂ—(v—v)/}(P—O)+F[/S2V,8'V(ﬂ—ﬁ)+vv~v(w—v)]20,

is satisfied for all (8,7) € Uaq(R).

(iv) The mapping (B,v) +— (S,I) is continuous from Ux(Q) C [L2(Q)]? to
L>°(0, t; L(Q)) for almost all time t in |0, T].

(v) The mapping (8,~, S, 1°05) s (P, Q) is continuous from Usq(Q) x L2(Q) x
L2(Q) C [L2(Q)]* to L>°(0, t; L?(2)) for almost all time t in]0, T].

(vi) Givenc = (¢, ¢2) € R2 (fix) define Ue(Q) = {(577) € Uag(Q) = [o(B,7)dx = c}.
Then, there exist T € R* such that the solution of IP is uniquely defined, up an additive
constant, on Uc(S2) in the L2(Q) sense for any regularization parameterT > T.



(i) Existence 1/2

We note that U,g(Q2) # 0@ and J(B,~) is bounded for any (3,v) € Uaq(£2). The fact
that Uzg(Q2) # 0 follows for instance by considering the pair of functions (8,~)(x) =
(b+ b,r+7)/2, which is belong to U,4(€2). The boundedness of J is deduced by the
following three facts: the bounded behavior of S and T on Q7 as consequence of part
(i), the hypothesis (SIS2) and the fact that V8, V+ € L?(Q) by the definition of U,q(2Q).
Then, we can consider that {(8n, vn)} C U is a minimizing sequence of J.

On the other hand, we claim the compact embedding HI9/21+1(Q) ¢ C*(Q) for a €
10,1/2]. Indeed, it can be deduced using two results. First, we have the Sobolev em-
bedding HI/21+1(Q) c C?(Q) with @ = 1/2 for d odd and 6 €]0, 1] for d even. Then,
for all d we have the continuous embedding HI¢/2+1(Q) ¢ C'/2(Q). Second, we have
the compact embedding C'/2(Q) C C*(Q) for all o €]0, 1/2]. Hence our claim follows
from the chain of embeddings HI9/2+1(Q) ¢ C1/2(Q) ¢ C*(Q) for all a €]0,1/2].

The compact embedding HI9/2+1(Q) c C*(Q) for o €]0,1/2], implies that the mini-
mizing sequence {(5Bn,vn)} is bounded in the strong topology of C*(Q2) x C*(Q2) for all
a €]0,1/2], since there exists a positive constant C (independent of 3,~ and n) such
that

1Bnllga gy + Ivnllga @y < C(IIBnHH\[d/21|+1(Q) + ”’7’7”H|[d/2]\+1(§2))7 Va €]0,1/2].

Now, we note that the right hand is bounded by the fact that 8, vn € HI9/21+1(Q) ( the
definition of Uz (2)).



(i) Existence 2/2

Let us denote by (Sp, In) the solution of the SIS model corresponding to (8s,vn). Then,
by considering the fact that {(8n,vn)} is belong to C*(2) x C*(Q) for all o €]0,1/2],
by (i), we have that S, and I, are belong to the Holder space C2**:'*% (Qr) and
also {(Sn, In)} is a bounded sequence in the strong topology of c2+a"+%(ar) X
C2+e1+3 (Qr) for all o €]0,1/2].

The boundedness of the minimizing sequence and the corresponding sequence {(Sp, In)},
implies that there exist

(B,7) € [CV2(Q) x CVAQ)] NUag(R),  (S.T) € C¥ 24 (Qr) x 22 1+4(Qy),
and the subsequences again labeled by {(5n, vn)} and {(Sh, In)} such that

Bn— B, ~vn—7F uniformly on C*(Q),

Sn =S, Ip—1 uniformly on C*% (Qr) N C®+*'*+2 (Qr).

Moreover, we can deduce that (S,7) is the solution of the SIS model corresponding to
the coefficients (8, 7).

Hence, by Lebesgue’s dominated convergence theorem, the weak lower-semicontinuity
of L2 norm, and the definition of the minimizing sequence, we have that

B,7) < i = inf )
J(B,7) < lim J(Bn, n) " )lguad(mul(ﬁ,v)

)

Then, (8,7) is a solution of of optimization problem.



(i) Boundedness of (P, Q) 1/3

The proof of that AP is the adjoint system for SIS we can follow by the standard argu-
ments in optimal control theory. Now, in order to get the L>°(0, t; H?(Q2)) estimates, let
us consider an arbitrary t €]0, T] and we claim that

1PC, D112 gy + 11QC, D22 g < C,

IVPC D2y +IIVQE, D20y < C,

IAP(, )2y + 1AQC Bl 20 < C.

IPC Do) < €, 1QC; Dlle(e) < C,
for a some positive generic constants C. We can prove the claims by standard es-
timates for an initial value problem equivalent to AP. Indeed, in order to transform
in an initial boundary problem we introduce the change of variable 7 = T — ¢ for
t € [0, T]. Moreover, consider the notation w4 (-, 7) = P(-, T—7), wa(-,7) = Q(-, T—7),
S*(,7)=S(, T—7),and I*(-,7) = I(-, T — 7). Then, the adjoint system AP is equiv-
alent to the system

* 2
(wy)r — Awy = B(X) (W) (wg — wa), in Qr,
_ S* 2
(w2)r — Aw = 5(X) (ﬁ) (Wi — w2) = F(X)(wy — W), in Qr,
+1
Vwi-n=Vws-n=0, onTl,

wi(x,0) = S(x, T) — 85(x), wn(x,0) =1(x, T) — I°5(x), inQ.

Now, we proceed to get the corresponding estimates for AP*.



(i) Boundedness of (P, Q) 2/3

In order the L2 and H(‘) estimates, we test the first equation by wy and the second
equation by ws, and sum the results to get that

1 d
5 A <||W1 (- 7')”%2(9) + [lwa(-, 7')”%2(9)) + IV (, T)HfZ(Q) + HVW2('7T)”i2(Q)
2 _ S* 2 5
/ 501 (g ) w8~ wimel o+ [ (m(xn () + H(x)) W — W3] o
< (B+7) [Iwa (s 1) I2o(g) + Wl 7) 22 gy |
Then, from the Gronwall inequality, we obtain
1wt (- 7)oy + 1Was )22 < ex0 (2B +F)T) (1w (-, 0) 25 + W2, O)liZ2gy ) -
which implies the L? estimate. ...
Vw1 (s P2 g + IV 20, 7)) < (B+Pexp (26+7)T) (w0l g, + lIma(-, O)I1

and we can follow the Hg estimate.



(i) Boundedness of (P, Q) 3/3

Using the fact that

1d

[ -awax=— [ iw)]- Vwax+ [ (w)-vim)-nds = 2 w1

for i = 1,2. We note that, multiplying the first equation by Awy, multiplying the second
equation by Aws, integrating on €2, and adding the results, we deduce that

1d 2 2 2 2
5 3= (W G + W2l liegy) + ||AW1(-,T)HL2(Q) + HAW2(-,T>||L2
< (B+?) [QEHW1( )HLZ(Q + 2€||W2( T)||L2 Q) + ”AW1( T)HLZ Q) + ”AWZ( T)HiZ(Q)]

for any € > 0. Then, we have that

d b+7
5 o (WD + W2l 2)) + (1 - (2)> (Iawi (7)) + AW (-, 72
< 26(b+ )[|Iwr (-, 7)o gy + IWa(s 722 g |-

Now, by selecting e > (b+4F)/2 and using the estimate L? estimate we get the inequality
for AP, AQ.

The norm of P(-,t) and Q(-, ) are bounded in the norm of H?(Q) for any t €]0, T].
Thus, by the standard embedding theorem of H?(Q) C L>°(Q2), we easily deduce that
P(-,t) and Q(-, t) are bounded in L>°(2).



(iii) Necesary Optimality condition 1/2

Let us consider an arbitrary pair (3,4) € Uag and introduce the notation

(8°7°) = (1-2)B.7) +<(B,9) € Uaa,
e = J(Ba,’ys):%/n(Sa(x,t)—SObs(x)‘z—&-

+5 [ (95 R +1927(01%) o

(%, 1) — /ObS(x)f) dx

where (8¢, ) is the solution of SIS with (3,~¢) instead of (3,7). Now, using the
hypothesis that (3, %) is an optimal solution of IP and taking the Fréchet derivative of J.,
we have that

A

+5/Q [v3Y (8- 5) + vV (v - 7)] dx >0,

aJe
de

8s° I
e __ Qobs go 5 __ jobs or
S(x,t)— S (x)‘ = L:O+ F(x,0) = 12%(0)| - L:O) dx

where 9. S¢ and 9. I¢ for e = 0 are calculated by analyzing the sensitivities of solutions
for SIS with respect to perturbations of (3, ).



(iii) Necesary Optimality condition

Let us consider

(2£,25) = 1 (8°-8,F -1,
£

2/2

1 s S 1
F, = _ - F, =
! SE—S[SE—H s+/} v

we deduce the following system

() — Az = —B°(OFF 2§ — 5°(x)(8)"Fv 25

7

il
S+ S+1

~(B=B)S)"(D" +7° (%25 + (7 =), in Qr,

(25) — Dz5 = BE(X)Ful 27 + B (x)(5)"Fv 25

+(B=B)(S™(MD" = (x)z5 — (¥ =), in Qr,

Vz{-n=Vz;-n=0,
7§ (x,0) = z(x,0) = 0,

onrl,
in Q.

Then, denoting by (21, z2) the limit of (z§,25) whene — 0...



(iv) continous dependence DP 1/2

Lemma

Consider that the following hypotheses (S1S0)-(SIS3) are satisfied. Let us consider
that (S,1) and (8,7) are the corresponding solutions of SIS model with coefficients
(8,7) € Ua() and (B,5) € Uzg(R), respectively. Then, there exist the positive
constant C such that the inequality

18— 8)C, )aqgy + 110 = N D2y < C(18 — Bl2eqy + 14— ey )

holds forany t € [0, T].



(iv) continous dependence DP 2/2

Now, by notational convenience we consider §S, §/, 53 and - defined as follows

68=58-5, sI=1—1 68=B—-B, 6v=%—r.

Then, from the system SIS for (S, /) and (5, 8) we have that (55, 5/) satisfy the initial
boundary value problem

(68); — A(6S) = —B(x) (SS_’_? - SS_H> —66(x) ( i7> +4(x)51 +~v(x)!, in € Qr,

(5/)zA(6/)=B(X)<;r7 Si,) + 86B(x )<§+7> 5(X)81 —~(X), in € Qr,

V(5S)-n=V(sl)-n=0, on €T,
(65)(x,0) = (6/)(x,0) =0, inQ.

vy Oy




(v) continous dependence AP 1/2

Lemma

Consider that the following hypotheses (SIS0)-(SIS3) are satisfied. Let us consider
that (S, 1) and (8,7) are the corresponding solutions of SIS model with coefficients
(B,7) € Uag(2) and (B,7) € Uaq(Q2), respectively. Moreover consider that (P, Q) and
(P, Q) are the solutions of the adjoint problems for (S, I) and (8, T) with (S°, [°bS) and
(8obs Jobs) as observations, respectively. Then, there exist the positive constant C such
that the inequality

1P = PYCOPaggy + (@ — O D2
< i (1B - B2z + 17 — V22qy )
+ 2(||sobs _ SObS”L2(Q) + ”lobs IObSHL2(Q )

holds for any t € [0, T].



(v) continous dependence AP 2/2

We consider that 6P = P — P and §Q = Q — Q which satisfy the system

(6P)¢ + A(5P) = B(x )(

0’)

/

[ (s%) )0

V(5P)-n=V(5Q)-n=0,
(0P)(x, T) = 8S(x, T) — (§°%(x) — $%(x)),

S+
oo (1o 2 ) -0

(6Q)(x, T) = 81(x, T) = (1%(x) — 1***(x)),

A>( - 50 (51 )Z(P—o»

in Qr,

in QT7

onTl,
in Q,

in Q.



(vi) Stability IP 1/4

Lemma

Consider that the following hypotheses (SIS0)-(SIS3) are satisfied. Let us consider
that (S, 1) and (3,7 are the corresponding solutions of SIS model with coefficients
(B,7) € Uaa(Q) and (8, 74) € Uaa(2), respectively. Moreover consider that (P, Q) and
(P, Q) are the solutions of the adjoint problems for (S, I) and (S T) with (8°s 1°0s) and
(80bs jobs) as observations, respectively. If [.,(5,~)dx = [.,(3,%)dx, the estimate

13 = Bl gy + 15— Moy < W[5 — 892, ) + T8 — 102, o 1,

is valid for some constant ¥ > 0.

us consider the notation of item (v). If there exists xo € Q such

Xiang& Liu (2015). Let
) (Xo) the estimate

that (8,7)(x0) = (5,

3 _ 2 2 A 2 Gobs _ qobs |2 L ||jobs __ jobs|2
max (8 = B)(0I + max| (5 — 1OP < W[5 = S| o + 1% — 12, ) |,

is valid.



(vi) Stability IP 2/4

Xiang & Liu uses the following result:

Lemma
For p € C[0, 1] we have maxyc(o.1] [o(X)| < |p(x0)| + [IV4ll 2(q)

We use a generalized Poincaré inequality

lpllw@) < Cllpllg) + IVollie@) Vo€ WHP(Q).



(vi) Stability IP 3/4
Using the fact that (3, ) and (3, %) are solutions of IP we have
/Q {(B B)a— s+ ; -(3- w)/} (P — Q)dxadt

1] [ V89— p)ax+ [ Ty V(- mox] 20, (B3) € U@,

/Q [(!§ B)SI7 (5 - ’Y)/:l( — Q)dxat

[ [ V593 Bdx+ [ v5-VE-)dx] 20. V(35) € Uan(R),

Then, selecting (3,4) = (B,7) in the first inequality and (3,4) = (3,~) in the second
inequality, rearranging some terms and applying the Cauchyy-Schwarz we deduce that

rIve - B)Ilfz(ﬂ) IV =20

S
~0)-55(P-Q)

dxdt+/ 15— ‘7(/5 — Q) — I(P - Q)| xd
Qr



(vi) Stability IP 4/4

MV = BBz + V(5 = NIz
3 2 = 2 Q 2 T 2
< ©4 [”/B - /BHLZ(Q) + H’Y - ’YHLZ(Q)] +©2 [”S - S|‘Loo(077';L2(Q) + ”l - IHLOO(O,T;LZ(Q))]
+ @3 [”f: - PHZW(OJ;LZ(Q)) + ”éf OHfOO(O,T;LZ(Q))]

< [61 + 02+ 63] |:||B - B”iZ(Q) + ”5/ - '7”%2(9)] +©3 |:H‘§Obs SHLZ(Q + H70bs - IHEZ(Q)]

Now, considering that (3, %), (8,7) € Us(£2), by the generalized Poincaré inequality, we
have that there exist a positive constant Cp,; such that

18 = BliZ2(q) + 117 = 71122 (g
< Cooi (VB = B)lZa( + IV (3 = M2y + 18 = BlIZs gy + 115 = 1121 )
= Coor(IV(B = Ao + IV (5 = NIZ2(0)-

Thus

(F=T) [IV(B = By + IV (5 = MllEagy] < T [118%° = 892, g + 119%% — 1222,

which implies the desired uniqueness for T = (81 + ©2 + ©3)Cpo;.



MODELLING ASSUMPTIONS



Modelling Assumptions 1/3

The mathematical model for invasion and persistence of parasites through
spatially distributed host populations assumes that [6]:

(A0) There are two independent host populations H; and H, which are
spatially distributed over non-coincident spatial domains 4 and
Qofc R (d=1,2,3);i.e. 4N # Band QN # Qi =1,2;
respectively. Here non-coincident The region Q4 is a reservoir
where live a parasite which, in most of the cases of interest, is
benign on the population H; and lethal on the population H..

(A1) Each host population is subdivided into three subclasses: sus-
ceptible individuals who are capable to be infected, infective in-
dividuals who have contracted the disease and are capable to
transmitting it, and recovered individuals. The notation ¢, and
x is used to represent the population densities of the subclasses
of susceptible, infective and recovered individuals from the total
population Hy = ¢ + v + x, while u, v, and w is used to represent
the population densities of the susceptible, infective and recov-
ered subclasses of the total population Ho = u + v + w.



Modelling assumptions 2/3

(A2) The susceptible individuals in the host population H; can contract
the disease from cross contacts with infected hosts from H; or
with the environment.

(A3) The susceptible individuals in the host population H, are infected
by contact with the environment but there is neither cross infec-
tion from infected hosts from H, nor crisscross infection with H;.

(A4) There is a contaminant on the habitat or environment. The pro-
portion of contaminant is represented by c.



Modelling assumptions 3/3

(A5) There is spatial heterogeneity into the coefficients.

>

The population H; follow a logistic dynamic with a space de-
pendent birth-rate b(x), which is identical in each subclass,
offspring being susceptible at birth because the disease is
assumed to be benign in H;.

The spatially density dependent mortality rate m(x)-+k(x)H,
is considered allowing a spatially variable carrying capacity.
Any demographic effect, besides a disease-induced mortal-
ity, on the population H. is ignored.

1/); is the duration of the infective stage in population H;,i =
1,2.

A fixed proportion w;y € [0, 1] of infective individuals from H,
become permanently immune, a proportion 1 — wy € [0, 1]
reentering to the susceptible class.

The disease can be lethal in the second host population with
a fixed survival rate ¢4 € [0, 1].



= A (-0 ) v = =
p = b
i Y 3
z g z
= 3 g
S (x)o ¥ 2,0
b(x) H, H,
T
% G31 (x) (I-chy
O31(x)c @ S (x)c
¢ —
Oxn(x)cu T
v O31(x) (I=chy
L

)Lzslv




Modelling: governing equations

(C)t\,/ — diV(d11 (X)v\p)
= —(T11(X)% — 0’31(X)CL,:‘ + (1 — W1))\1'l,‘1
+b(x)Hy — (m(x) + k(x)Hy ),
o — div(di2(x) V)
= (711(X)% + 031 (X)CL,D — M
—(m(x) + k(x)H1 ),
Orx — div(di3(x)Vx)
= wi M — (m(x) + k(xX)H1)x,

in Q1,T =4 X]O, T[,

Ot — div(daq (X)VU) = —os2(x)cu,
otV — diV(dQQ(X)VV) = 0’32(X)CU — AoV, in Qz,T = QQX]O, T[,
atW — diV(ng(X)VW) =e1Xo v,

drc = a13(X)(1 =€)t + oo3(X)(1 — )V — d(x)e,  in Qr = (1 UQ)x]0, T



Modelling: initial and boundary conditions

We consider no-flux boundary conditions

Do b Dy

ET; - dﬂx)ﬁ . dw(x)ﬁ ~0, onlyr=09x]0,T]
ou ov ow

21(0) 5, = GaX) 5 = cho(X)

d11(X)
0, on r277' = 0 X]O, T[,

where 7; are the unit normal vector to 99; and the initial conditions are

©(x,0) = po(x), ¥(x,0)=1o(x), x(x,0)= xo(x), in Q. 71,
u(x,0) = up(x), v(x,0)=wv(x), w(x,0)= wy(x), in Q. 7,
c(x,0) = co(x), inQr.

Moreover, we assume that ¢y(x) € [0, 1] for x € Q1 U Q.



DEFINITIONS OF DIRECT AND INVERSE PROBLEMS



Direct Problem
Notation:
hi = (¢, %, x) o1 = (011,031, b,m, k) Dy = diag(di1, di2, di3)
hy = (u,v,w) = (032, b, m, k) Do = diag(doq, Oo2, do3)
= (013, 023,9)
= (

'h = (hy,hy,0)] \

01,02,03) ‘

Definition
The direct problem is defined as follows: Given o, D; and the initial
conditions find h the solution of the following IBVP

othy — diV(D1 (X)Vh1) = F(h1 , C; 0'1(X)) in Q17T,
6th2 — diV(]D)Q(X)th) = G(hz, C; 0'2(X)) in QQ’T,
oic = K(h1,h27C; 0’3(X)) in QT,
Di(x )@ 0 onlr,
omi

initial conditions



Inverse Problem

Definition
The direct problem is defined as follows: Given o, D; and the initial
conditions find h the solution of the following IBVP

othy — diV(D1 (X)Vh1) = F(h1 , C; O’1(X)) in Q17T,
athz — diV(]D)g(X)th) = G(hg, C; O'Q(X)) in 027T,
oic = K(h1,h2,C; 0'3(X)) in QT,
D; ( )8h =0 on |_,'77',
on;

initial conditions

Definition

The inverse problem is defined as follows: Given Dy, initial conditions
and some experimental data at time T given by ho?S(-, T), find the
coefficients o such that the solution h(-, T) of the IBVP for o is “very
close” to hobs(-, T).



WELL POSEDNESS OF DIRECT PROBLEM



Notation

In order to simplify the presentation of our results and proofs we con-
sider the following notation

L= @) % L2(R%) x LP(24 U D),
P =[] xLP@2) x L9 U )
¢ = [coo@)] x (@) x [ (HTm\D) | x (@ U),

with D = (9941 N Q2) U (092 N Q4); and analogously to £P we consider
the notation for the functional spaces W™ and H™.



Hypothesis

(HO)

(H1)

The sets Q4 and €, are open bounded convex sets of R? such
that 0Q; are of C®° regularity.

The functions modelling the initial conditions are non-negative
and satisfying the following regularity conditions: ¢, 19, xo are
continuous on Q4 Up, Vo, Wy are continuous on Q,; and ¢ is con-
tinuous on Q4 U Qx\D. Moreover, we assume that ¢y(x) € [0, 1]
on Q4 U Qo.

The diffusion coefficients d;; for (/, ) € {1,2} x {1,2,3} are pos-
itive functions, bounded from below on ; and belong C2%(Q;) N
L>(€)).

The coefficients are componentwise strictly positive on their do-
mains of definition, i.e. 011, 031, b, m, and k are strictly positive on
Qy; 032 is strictly positive on Qp; § is strictly positive on Q¢ U Qy;
043 is strictly positive on Q4 and identically 0 outside of Q1; 023 is
strictly positive on Q, and identically 0 outside of Q,. Moreover,
0 € C* and the birth and mortality rates are such that b(x) — m(x)
is strictly positive for all x € Q4.




Well posedness of the direct problem

Theorem (Fitzgibbon, Langlais & Morgan, 2007)

If the requirements listed above in (HO)-(H3) are met, then the direct
problem has a unique, classical, global nonnegative solution

©, ¥, X, U, v, w, and ¢, which is componentwise non-negative; ¢, 1,
and x are uniformly bounded on Q; = Q4x]0, o[, u, v, and w, are
uniformly bounded on Q, = Q,x]0, oo, and ¢ is uniformly bounded
on Q= (21 UQ)x]0,c[; and c(x,t) € [0,1] on Q.

The proof is divided in four big parts: the local existence is followed
by Banach fixed point argument; the componentwise non-negativity
is deduced by application of the weak maximum principle for scalar
parabolic equations; the global well posedness is a consequence of
L., estimates of solution components; and the global existence is
proved by using the results for discontinuous coefficients and uniform
estimates using cut-off functions.



INVERSE PROBLEM RESULTS



Inverse problem

We reformulate the inverse problem as an optimization problem. Let us consider the
following cost functional

1 r
J(h,) = 3 ||ty e, ), T) = (0P, 0G|+ S VeI, T >0,

2
r2

where h9bs = (¢Obs, 10bs 4 0bs) hgbs = (yobs yobs wobs) Thus the inverse problem is
formalized as the following optimization problem

Find @ € Uy : J() = eienuf J(8) subject to (hy, hy, ¢) is solution of direct problem.
ad

where Uy := Uzg(€21,Q2) is the admissible set

Uaa(Q) = A(Qq, Q) nHI/AH

9
{e = (61,62,03) €C* : Ran(6) C [[Ir, 1 CRY, VOc ]Lz}
i=1

A(Q‘I ’ 92)



Results

The main results are the following:

(a) the existence of solutions for the inverse problem,
(b) a well defined adjoint state,

(c) the introduction of first order optimality condition,
(d)

d) the stability of a direct problem solution with respect to the
coefficients of the reaction term,

(e) the stability of the adjoint problem solution with respect to
the coefficients of the reaction term and the observations,

(f) the uniqueness of the identification problem.



(a) the existence of solutions for the inverse problem

Theorem

Let us consider that (H0)-(H3) and the following hypothesis
(H4) The observation function (h%°s, hgbs, c°bS) pelongs L2,

are valid. Moreover consider the on U := A(Q4,Q2) N M with

M a bounded closed set of #19/2+1 containing the constant

functions. Then, there exists at least one solution of optimization
problem onU.



(b) Adjoint state 1/2

We introduce the adjoint state

opi + div(Di(x)Vp;) = qi(x,p;,s:h;,T,0,(x)), InQr, =12,
os = <(x,p1,P2,5C,05(x)), inQr,
(Di(x)Vh;))-m; = 0, onl;r, i=1,2,
pi(x,T) = hj(x,T)—h%(x), inQ;, i=1,2
s(x,T) = ©¢(x,T)—c%(x), inQquUQy,

where the functions q; and ¢ are defined as follows

P(p + )

()2 +731(X) } (P12 = p11) + (b(X)—m(X))pﬂ

Qi = {011()()

—k(x) (2@711 + P12 + pr) ;
7@ +%)
(Hy)?
—F(X)<¢P11 +ZEP12 +YP13) +T13(x)(1 = 0)s,

G12 = 711(x)

qi3 = —a11(X) g (P12 — P11) — B(X)P11 *R(X)<¢P11 + P12 +2YP13>’

(H )2

(P12 = P11) + (1 — wi Xy + b(x))p11 — M(X)P12 + wi A (P13 — P12

Qo1 = T32(X)C(P22 — P21), Qo2 = eXa(Po3 — Po2) + T23(X)(1 — ©C)s, Qo3 =0,

¢ = T3 (X)i(fhz — P11) + Ta2(X) V(P22 — Po1) — (513()‘)@4— F23(X)V + 5(x))s.



(b) Adjoint state 2/2

Theorem

Assume that the hypothesis (HO)-(H4) are satisfied, consider
that 6 is the solution of optimization problem and (hq,hy,¢)
is the corresponding solution of direct problem with 8 instead
of 8. Then, the adjoint system is given by the system de-
fined previously. Moreover, the pair (p1,p2) is bounded in
L>(0, t; [H?(Q4)]® x [H?(Q2)]3) for almost all time t in 0, T] and
the solution of the adjoint system is bounded in L>(0, t; L) for
almost all time t in ]0, T].



(c) first order optimality condition

Theorem ) -
Assume that the hypothesis (H0)-(H4) are satisfied and

consider the notation 6, (h4, h>,C) and (p1, P2, S) as is given in
Theorem for adjoint state. Then, the following inequality

// {{(611 *511)¢—l + (631 031)} (P11 — P12) + bHip11 — (m+ kHy)hy '91}‘
Q7 Hy
+// (632 — T32) (P21 — poz)dxdt

Q7
+// G613 —13)(1 — O)Fs + (033 —533) (1 — O)F

Or{< 13 13) ( 23 23)

—(8—5)6}sdxdt+ r/ Vo, - V(8 —51)dx+r/ V0, - V(8, — 8)dx
Q4 Q

+F/ Vas . V(ég — 53)dX] >0, VO e Uzg,

QUQp

is satisfied.



(d)-(e) stability of a direct and adjoint problem
solutions . ..

Theorem

Assume that the hypothesis (H0)-(H4) are valid. Then, consider-
ing the norm induced topologies of 1.2, L>=(0, t; £?), and 1.2 x L?
we have that the assertions

(i) The mapping 6 — (hy, hy, ¢) is continuous from Uay C 1.2
to L>(0, t; £?) for almost all time t in]0, T].
(ii) The mapping (8, h$%°,hgbs, cob) s (py, po, s) is

continuous from Uag x £2 C 1.2 x L2 to L>(0, t; £?) for
almost all time t in 10, T].

are satisfied.



(f) the uniqueness of the identification problem ...

Theorem
Let us define the set

uc:{eeu : /Qe(x)dx:c, C:(C1,...,CQ)GR3_}

with U the set defined on Theorem for existence of solutions.
Then, for each ¢, the solution of optimization problem is uniquely
defined, up to an additive constant, on U, in the L2 sense for any
large enough regularization parameterT .



MATHEMATICAL MODEL FOR TUMOR GROWTH



Direct problem: Mathematical model

The cancerous cells invasion taking place in a bounded domain Q ¢ RY, (d = 1,2,3)
with smooth boundary 92 can be modelled by the reaction-diffusion system:

up — diAu = o gr (U)u — (Brv +w)u in Qr,
Vi — AV = apgo(V)V — (B2U + y2w)V in Qr,
Wi — dgAw= —agw + U in Qr,
u(x,0) = up(x), v(x,0) = vp(x), w(x,0) = wo(x) in Q,
ou = ov = ow =0 onflr.
on  oOn on

where u(x, t) is the tumor cells density, v(x, t) the normal cells density and w(x, t) is
the drug concentration.

- Qr:=Qx(0,T)and - v1(x), v2(x) death rates by
Fr:=0Qx(0,T). treatment;

a1(X), aa(x) growth rates;
az(x) reabsorption rate for the
drug;

B1(x), B2(x) death rates by
competition; - nis the unit normal.

- U(x,t) > 0drug injected;

- dj, db, d3 > 0 are the diffusivity;



Parameter calibration problem

We consider the direct problem

Oty — diAuy = (9191(111) — (a2 + 96U3)) us, in Qr :=Qx (0, T),
Otlp — tp AU = <9292(U2) — (Osuy + 97U3)) U, in Qr,

Otz — dsAuz = —b3u3 + U, in Qr,

(U1, Uz, uz)(x,0) = (U1,0, U0, U3,0)(X), in Q,
Vui-n=Viu-n=Vuz-n=0, onlr:=0Qx(0,T).

Inverse problem is defined as follows:

Given u®s and ug defined on Q, find the set of real functions defining the compo-
nents of 6 defined on €, such that the solution u of the direct problem satisfy the
final time condition u(x, T) = u°s(x) for x € Q.



Optimal control problem

Defining J, 7 and the admissible set S,4(Q2) as follows

2

_1 _ 40bs
Jw) = 5 fu m—u

M g2
J(0) = J(ug) + §||0||[L2(Q)]7’

7
S.4(Q) = {e LB : o(x) e []l0,65™] ae xe Q},
k=1

we recast the parameter identification problem as the following optimization problem:

Givgn us and uy, find 6 such that:
J(6) := min_ 7(6) subject to ug solution of direct problem.
0€5:4(Q)



NUMERICAL SOLUTION



METHODOLOGY



1 Observation
1
¥
Continous State H Continous Cost Continous adjoint Continous gradient
(S.1) : J (p.9) - vJ
Discrete State i _ | Discrete Cost Discrete adjoint discrete gradient
(Salw U (Pard ) vJ,

1 Continous
Leep! - Observation
 Discretized



ODE MODELS



ODE model

BOS(1) I(1)

d
S =A=pSO) ==

D )ity —m.

""""""""

3[0.2 + sin(wt/3)] S(¢) I(1)
10000 + 100 /()

9y = B02+ s/ SW D)

dt 10000 + 100 /(7)

S(0)  =14000, /(0) = 600.

d
= — 400 — 0.02 _
tS(t) 00 — 0.02 S(t)

(0.02 + 0.04) /(1) — 10,



ODE Inverse

Minimize J(,7) = & H/M — Jobs

2
Ly

.
= I _ IObS 2
o =8 [ Uy = = (r)dr

M o

observation parameters 0.0200 0.0400
initial guess parameters 0.0005 0.0100
identified parameters 0.0206 0.0387

F. Novoa-Munoz, S. Espinoza, A, Coronel, |. Hess (2019)




IDENTIFICATION



Finite volume approximation of direct problem

S-S5 [d () ST — (d (Xk) + o (% ))s”+1 +di(x )s"“]
At Ax A | Y1\ Ak )oK 1Ak 1 Xk—1 Kk 1 \Xk—1)9K_1
— BOK)SETE + v () 7
Iﬁ“ — Il’: 1 n+1 n+1 n+1
H = o [T — (00 + G I+ de(xe )

+ BOx) S — (i) [

SI-85 _ Sta-Sy_ KB _h—l

Ax Ax ’ Ax Ax
SP=So(x), I = lo(xk)-

Iy + Lg + AtBDI"  —Aty st g
—AtgDI Iy + L+ Aty 1 =\

Numerical scheme 1D: Liu & Yang (2022) ...has several properties: preserves the
biological meaning (such as positivity) and is unconditionally convergent.



Inverse problem

S — diver(d; (x)VS) = —B(x)SI + ~(x)1, in Qr,
Ol — diver(dz(x)VI) = B(x)SI — v(x)I, in Qr,
vVS-n=VI/-n=0, inlr,
(S, 1)(x,0) = (So, b)), onQ,

Parameter identification problem: The diffusion coefficients d; and d. depend of a fi-
nite number of parameters denoted by e = (ey, ..., en) which is explicitly denoted by
di(x) = dj(x;e) fori=1,2.

inf Ja(e), Ja(e)=Ja(Sa,ln),
ecR”

subject to (Sa, Ia) solution of numerical scheme for direct problem,

Ax M AX M
In(Saln) = 5 DS = SEF 4 D UK - )
k:1 k=1



Adjoint scheme and discrete gradient

P A Pnﬂ = L[d Xe1)Pp_y — (d d Pyl + di (x) S}

N  (Xk—1)PR_q — (1(Xk)+ 1(Xk—1)> %+ 01 (xk) Sl
B (P — Qk)
[ o”*‘ 1
= 7[R0 — (o) + G xe—1) ) 1+ () Qf

+ (BO%)SE = 4(x)) (QF — P7)

PP _ P =Py H-Q_ @~ _,

Ax Ax ’ Ax Ax ’

P = IS —sgel, Qi = 1Y — .

VeJna(e)
N M
= Z [Ved1 (Xk Sk+1 (Ved1 (Xk) + Ved; (xk_1)>S,’(7 + Ved; (Xk_1)$,'(171:|P;2
n=0 k=1
+ [ e (X ) Ky — (Vedz(xk) +Ved2(Xk—1)> Ig + Vedz(xk—1)/;'<l1]Q;Q7
M+1

+ 137 [ (%) Vedh (xk) + b (1) Ve (x0)] -
k=0



We consider

Example 1: Identification of a constant diffusion

B(x) = 0.000284535, ~(x) =0.144, (Sp, h)(x) = %(X,Z - X),
e=(e,e), di(x;e)=ey,

da(x;e) = ep.

We construct the observation profile at T = 0.6 by considering a numerical simulation of
the direct problem with %S = (0.5,0.5), M = 200 and N = 100000 (i.e., Ax = 5E — 3
and Ax = 6E — 6).

0.8

[(z,t)

0.6

0.4




Example 1: inital guess e = (0.1,0.1), e = (0.52294,0.55149), e = (0.5, 0.5)
0.45 0.8

=—I. guess = 1. guess
———ident. ——Ident.
04 Obs. 0.75 Obs.
'@ 0.7 ;_-_-_____~___-
- — Q« _-—‘_1
S SO g
p—e—e——F { =065
1 0.6
- - 0.55 : - - -
0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
xT
0.325 0.7
[
0.695 °
0.69
0.685
o
0.68 o
© o0
0.675
0.2 0.4 0.6 0.8 1




Example 2: Identification of a quadratic diffusion

function
We consider 5(x) = 0.000284535, ~(x) = 0.144, and
0, x < 0.3,
h(x) = 100000x — 30000, 0.3 < x < 0.5,
0 —100000x + 70000, 0.5 < x < 0.7,
0, otherwise.

di(x;e) = 0.1 + e;x + exx?, do(x;e) = 0.2 + e3x + e4x°.

We construct the observation profile at T = 0.6 by considering a numerical simulation
of the direct problem with @5 = (0.5,0.5,0.5,0.5), M = 200 and N = 100000 (i.e.,
Ax =5E —3and Ax = 6E — 6).

%10




Example 2. e0—01.. ex = (0.75143,0.42256,0.95842,0.21146), €% = 0.5. ..

‘ 4000
5F ‘~\~\
. 3000 (p
o S
5 \ | & T
A4St 1= ~-<
2000 f N
=—1I. guess —1. guess \
——ident. ———Ident. i
Obs. i Obs. ‘
4 1000
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T x
1.5 14 .
—1. guess —1. guess -
« ident. x 12 « Ident.
Obs. - : Obs. .
1r 1 1
& . o8
= o =
o
05 - 1 0.6
o
-
#ﬁ_,,w' 0.4
0 0.2
0 0.2 0.4 0.6 0.8 1 0
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