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SIS MODEL RESULTS



SIS model: direct problem and inverse problem

(x)γ I
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1

SI(x)β

Direct problem: Given {β, γ,S0, I0} find {S, I} such that

St −∆S = −β(x)
SI

S + I
+ γ(x)I, (x, t) ∈ QT := Ω× [0,T ],

It −∆I = β(x)
SI

S + I
− γ(x)I, (x, t) ∈ QT ,

∇S · n = ∇I · n = 0, (x, t) ∈ Γ := ∂Ω× [0,T ],

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω,

Inverse problem: Given {S0, I0,Sobs(·,T ), Iobs(·,T )} find {β, γ} such that {Sβ,γ , Iβ,γ}
is the solution of a SIS model satisfying Sβ,γ(·,T ) ≡ Sobs(·,T ) and Iβ,γ(·,T ) ≡
Iobs(·,T ).



Inverse problem results

- The inverse problem for onedimensional and restrictive condition for the stability
result of a SIS model.

Xiang & Liu (2015)

- The extension to the multidimensional case with a more general assumption for
the stability result.

Coronel, Huancas & Sepúlveda (2019)

- The extension to the multidimensional case with the infection force of the type
SnIn instead of SI/(S + I).

Coronel, Friz, Hess & Zegarra (2019)

- The extension to the model of indirectly transmitted diseases model.
Coronel, Huancas & Sepúlveda (2019)

- The identification of diffusion when the diffusion is space dependent function.
A. Coronel, F. Huancas, I. Hess & A. Tello (2024)

- Identification of reaction in a reaction-diffusion system for tumor growth.
PhD thesis of I. Hess . . . stay in Seville with collaboration of F. Guillén-Gonzaáles



SIS model
The direct problem is reduced to: Given S0, I0, β, γ find S, I such that

∂S
∂t

−∆S = −β(x)
SI

S + I
+ γ(x)I, (x, t) ∈ QT := Ω× [0,T ],

∂I
∂t

−∆I = β(x)
SI

S + I
− γ(x)I, (x, t) ∈ QT ,

∇S · n = ∇I · n = 0, (x, t) ∈ Γ := ∂Ω× [0,T ],

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

The Inverse Problem is defined as follows: Given T > 0 and the set of functions
{S0, I0,Sobs, Iobs} defined on Ω, find the functions β and γ such that (S, I)(x,T ) =
(Sobs, Iobs)(x) for x ∈ Ω with (S, I) the solution of the forward problem.

The inverse problem may be recasting as the optimization problem

inf J(β, γ) subject to (β, γ) ∈ Uad (Ω) and (S, I) solution of SIS model,

where J and Uad (Ω) are appropriately defined.



SIS model

We consider the admissible set Uad (Ω) and the functional J : Uad (Ω) → R defined as
follows

Uad (Ω) = A(Ω) ∩
[
H|[d/2]|+1(Ω)× H|[d/2]|+1(Ω)

]
,

J(β, γ) :=
1
2

[
∥S(·,T )− Sobs∥2

L2(Ω)
+ ∥I(·,T )− Iobs∥2

L2(Ω)

]
+

Γ

2

[
∥∇β∥2

L2(Ω)
+ ∥∇γ∥2

L2(Ω)

]
,

with |[·]| the integer part function, Γ ∈ R+ an appropriate regularization parameter and

A(Ω) =
{
(β, γ) ∈ Cα(Ω)× Cα(Ω) : Ran(β) ⊆ [b, b] ⊂]0, 1[,

Ran(γ) ⊆ [r , r ] ⊂]0, 1[, ∇β, ∇γ ∈ L2(Ω)
}
,

where Ran(f ) denotes the range of a function f . We note that Uad (Ω) = A(Ω) when
d = 1 and coincides with the admissible set considered by Xiang & Liu (2015).



SIS model
We consider the following set of assumptions:

(SIS0) The open bounded and convex set Ω is such that ∂Ω is C1.

(SIS1) The initial conditions S0 and I0 are belong to C2,α(Ω) and satisfy the
inequalities

S0(x) ≥ 0, I0(x) ≥ 0,
∫
Ω

I0(x)dx > 0, S0(x) + I0(x) ≥ ϕ0 > 0,

on Ω, for some positive constant ϕ0;
(SIS2) The observation functions Sobs and Iobs are belong to L2(Ω).

We consider that the adjoint system to SIS model is given by

∂P
∂t

+∆P = β(x)
I
2

(S + I)2
(P − Q), (x, t) ∈ QT := Ω× [0,T ],

∂Q
∂t

+∆Q =

(
β(x)

S
2

(S + I)2
− γ(x)

)
(P − Q), (x, t) ∈ QT ,

∇P · n = ∇Q · n = 0, (x, t) ∈ Γ := ∂Ω× [0,T ],

P(x,T ) = S(x,T )− Sobs(x), Q(x,T ) = I(x,T )− Iobs(x), x ∈ Ω,

where (β, γ) ∈ Uad and (S, I) is the corresponding solution of SIS model with (β, γ)
instead of (β, γ).



SIS model: Direct problem

Theorem
Consider that the hypotheses (SIS0)-(SIS2) are satisfied. If (β, α) ∈ Cα(Ω)× Cα(Ω),
the initial boundary value problem SIS admits a unique positive classical solution (S, I),
such that S and I are belong to C2+α,1+α/2(QT ) and also S and I are bounded on QT ,
for any given T ∈ R+.

The existence and the uniqueness can be developed by the Shauder’s theory for parabolic
equations. Meanwhile, the positive behavior of the solution is a consequence of the
maximum principle.



SIS model

Theorem
Consider that the following hypotheses (SIS0)-(SIS3) are satisfied. Then,
(i) There exists at least one solution of optimization problem (IP).
(ii) Let us consider (β, γ) is the solution of IP and (S, I) the corresponding solutions of
SIS with (β, γ) instead of (β, γ). Then, (P,Q) is bounded in L∞(0, t ;H2(Ω)) for almost
all time t in ]0,T ]. In particular (P,Q) is bounded in L∞(0, t ; L∞(Ω)) for almost all time
t in ]0,T ].
(iii) Let us consider S, I, β, γ,P and Q as is given in (ii). Then, the following inequality

∫
QT

[
(β̂ − β)

S I

S + I
− (γ̂ − γ)I

]
(P − Q) + Γ

[ ∫
Ω
∇β · ∇(β̂ − β) +∇γ · ∇(γ̂ − γ)

]
≥ 0,

is satisfied for all (β̂, γ̂) ∈ Uad (Ω).
(iv) The mapping (β, γ) 7→ (S, I) is continuous from Uad (Ω) ⊂ [L2(Ω)]2 to
L∞(0, t ; L2(Ω)) for almost all time t in ]0,T ].
(v) The mapping (β, γ,Sobs, Iobs) 7→ (P,Q) is continuous from Uad (Ω) × L2(Ω) ×
L2(Ω) ⊂ [L2(Ω)]4 to L∞(0, t ; L2(Ω)) for almost all time t in ]0,T ].
(vi) Given c = (c1, c2) ∈ R2

+ (fix) define Uc(Ω) =
{
(β, γ) ∈ Uad (Ω) :

∫
Ω(β, γ)dx = c

}
.

Then, there exist Γ ∈ R+ such that the solution of IP is uniquely defined, up an additive
constant, on Uc(Ω) in the L2(Ω) sense for any regularization parameter Γ > Γ.



(i) Existence 1/2
We note that Uad (Ω) ̸= ∅ and J(β, γ) is bounded for any (β, γ) ∈ Uad (Ω). The fact
that Uad (Ω) ̸= ∅ follows for instance by considering the pair of functions (β, γ)(x) =
(b + b, r + r)/2, which is belong to Uad (Ω). The boundedness of J is deduced by the
following three facts: the bounded behavior of S and T on QT as consequence of part
(i), the hypothesis (SIS2) and the fact that ∇β, ∇γ ∈ L2(Ω) by the definition of Uad (Ω).
Then, we can consider that {(βn, γn)} ⊂ U is a minimizing sequence of J.

On the other hand, we claim the compact embedding H|[d/2]|+1(Ω) ⊂ Cα(Ω) for α ∈
]0, 1/2]. Indeed, it can be deduced using two results. First, we have the Sobolev em-
bedding H|[d/2]|+1(Ω) ⊂ Cθ(Ω) with θ = 1/2 for d odd and θ ∈]0, 1[ for d even. Then,
for all d we have the continuous embedding H|[d/2]|+1(Ω) ⊂ C1/2(Ω). Second, we have
the compact embedding C1/2(Ω) ⊂ Cα(Ω) for all α ∈]0, 1/2]. Hence our claim follows
from the chain of embeddings H|[d/2]|+1(Ω) ⊂ C1/2(Ω) ⊂ Cα(Ω) for all α ∈]0, 1/2].

The compact embedding H|[d/2]|+1(Ω) ⊂ Cα(Ω) for α ∈]0, 1/2], implies that the mini-
mizing sequence {(βn, γn)} is bounded in the strong topology of Cα(Ω)×Cα(Ω) for all
α ∈]0, 1/2], since there exists a positive constant C (independent of β, γ and n) such
that

∥βn∥Cα(Ω) + ∥γn∥Cα(Ω) ≤ C
(
∥βn∥H|[d/2]|+1(Ω) + ∥γn∥H|[d/2]|+1(Ω)

)
, ∀α ∈]0, 1/2].

Now, we note that the right hand is bounded by the fact that βn, γn ∈ H|[d/2]|+1(Ω) ( the
definition of Uad (Ω)).



(i) Existence 2/2
Let us denote by (Sn, In) the solution of the SIS model corresponding to (βn, γn). Then,
by considering the fact that {(βn, γn)} is belong to Cα(Ω) × Cα(Ω) for all α ∈]0, 1/2],
by (i), we have that Sn and In are belong to the Hölder space C2+α,1+α

2 (QT ) and
also {(Sn, In)} is a bounded sequence in the strong topology of C2+α,1+α

2 (QT ) ×
C2+α,1+α

2 (QT ) for all α ∈]0, 1/2].

The boundedness of the minimizing sequence and the corresponding sequence {(Sn, In)},
implies that there exist

(β, γ) ∈
[
C1/2(Ω)× C1/2(Ω)

]
∩ Uad (Ω), (S,T ) ∈ C2+ 1

2 ,1+
1
4 (QT )× C2+ 1

2 ,1+
1
4 (QT ),

and the subsequences again labeled by {(βn, γn)} and {(Sn, In)} such that

βn → β, γn → γ uniformly on Cα(Ω),

Sn → S, In → I uniformly on Cα,α2 (QT ) ∩ C2+α,1+α
2 (QT ).

Moreover, we can deduce that (S, I) is the solution of the SIS model corresponding to
the coefficients (β, γ).

Hence, by Lebesgue’s dominated convergence theorem, the weak lower-semicontinuity
of L2 norm, and the definition of the minimizing sequence, we have that

J(β, γ) ≤ lim
n→∞

J(βn, γn) = inf
(β,γ)∈Uad (Ω)

J(β, γ).

Then, (β, γ) is a solution of of optimization problem.



(ii) Boundedness of (P,Q) 1/3
The proof of that AP is the adjoint system for SIS we can follow by the standard argu-
ments in optimal control theory. Now, in order to get the L∞(0, t ;H2(Ω)) estimates, let
us consider an arbitrary t ∈]0,T ] and we claim that

∥P(·, t)∥2
L2(Ω)

+ ∥Q(·, t)∥2
L2(Ω)

≤ C,

∥∇P(·, t)∥L2(Ω) + ∥∇Q(·, t)∥L2(Ω) ≤ C,

∥∆P(·, t)∥L2(Ω) + ∥∆Q(·, t)∥L2(Ω) ≤ C,

∥P(·, t)∥L∞(Ω) ≤ C, ∥Q(·, t)∥L∞(Ω) ≤ C,

for a some positive generic constants C. We can prove the claims by standard es-
timates for an initial value problem equivalent to AP. Indeed, in order to transform
in an initial boundary problem we introduce the change of variable τ = T − t for
t ∈ [0,T ]. Moreover, consider the notation w1(·, τ) = P(·,T−τ), w2(·, τ) = Q(·,T−τ),
S∗(·, τ) = S̄(·,T − τ), and I∗(·, τ) = Ī(·,T − τ). Then, the adjoint system AP is equiv-
alent to the system

(w1)τ −∆w1 = β(x)
(

I∗

S∗ + I∗

)2
(w1 − w2), in QT ,

(w2)τ −∆w2 = β̄(x)
(

S∗

S∗ + I∗

)2
(w1 − w2)− γ̄(x)(w1 − w2), in QT ,

∇w1 · n = ∇w2 · n = 0, on Γ,

w1(x, 0) = S̄(x,T )− Sobs(x), w2(x, 0) = Ī(x,T )− Iobs(x), in Ω.

Now, we proceed to get the corresponding estimates for AP∗.



(ii) Boundedness of (P,Q) 2/3

In order the L2 and H1
0 estimates, we test the first equation by w1 and the second

equation by w2, and sum the results to get that

1
2

d
dτ

(
∥w1(·, τ)∥2

L2(Ω)
+ ∥w2(·, τ)∥2

L2(Ω)

)
+ ∥∇w1(·, τ)∥2

L2(Ω)
+ ∥∇w2(·, τ)∥2

L2(Ω)

≤
∫
Ω
|β̄(x)|

(
I∗

S∗ + I∗

)2
|w2

1 − w1w2| dx +

∫
Ω

(
|β̄(x)|

(
S∗

S∗ + I∗

)2
+ |γ̄(x)|

)
|w1w2 − w2

2 | dx

≤
(

b + r
) [

∥w1(·, τ)∥2
L2(Ω)

+ ∥w2(·, τ)∥2
L2(Ω)

]
.

Then, from the Gronwall inequality, we obtain

∥w1(·, τ)∥2
L2(Ω)

+ ∥w2(·, τ)∥2
L2(Ω)

≤ exp
(

2(b + r)T
)(

∥w1(·, 0)∥2
L2(Ω)

+ ∥w2(·, 0)∥2
L2(Ω)

)
,

which implies the L2 estimate. . . .

∥∇w1(·, τ)∥2
L2(Ω)

+ ∥∇w2(·, τ)∥2
L2(Ω)

≤ (b + r) exp
(

2(b + r)T
)(

∥w1(·, 0)∥2
L2(Ω)

+ ∥w2(·, 0)∥2
L2(Ω)

)
,

and we can follow the H1
0 estimate.



(ii) Boundedness of (P,Q) 3/3
Using the fact that∫
Ω
(wi )τ∆wi dx = −

∫
Ω
∇[(wi )τ ] · ∇wi dx +

∫
∂Ω

(wi )τ∇(wi ) · n dS = −
1
2

d
dτ

∥wi (·, τ)∥2
L2(Ω),

for i = 1, 2. We note that, multiplying the first equation by ∆w1, multiplying the second
equation by ∆w2, integrating on Ω, and adding the results, we deduce that

1
2

d
dτ

(
∥w1(·, τ)∥2

L2(Ω)
+ ∥w2(·, τ)∥2

L2(Ω)

)
+ ∥∆w1(·, τ)∥2

L2(Ω)
+ ∥∆w2(·, τ)∥2

L2(Ω)

≤ (b + r)
[
2ϵ∥w1(·, τ)∥2

L2(Ω)
+ 2ϵ∥w2(·, τ)∥2

L2(Ω)
+

1
2ϵ

∥∆w1(·, τ)∥2
L2(Ω)

+
1
2ϵ

∥∆w2(·, τ)∥2
L2(Ω)

]
,

for any ϵ > 0. Then, we have that

1
2

d
dτ

(
∥w1(·, τ)∥2

L2(Ω)
+ ∥w2(·, τ)∥2

L2(Ω)

)
+

(
1 −

(b + r)
2ϵ

)(
∥∆w1(·, τ)∥2

L2(Ω)
+ ∥∆w2(·, τ)∥2

L2(Ω)

)
≤ 2ϵ(b + r)

[
∥w1(·, τ)∥2

L2(Ω)
+ ∥w2(·, τ)∥2

L2(Ω)

]
.

Now, by selecting ϵ > (b+r)/2 and using the estimate L2 estimate we get the inequality
for ∆P,∆Q.
The norm of P(·, t) and Q(·, t) are bounded in the norm of H2(Ω) for any t ∈]0,T ].
Thus, by the standard embedding theorem of H2(Ω) ⊂ L∞(Ω), we easily deduce that
P(·, t) and Q(·, t) are bounded in L∞(Ω).



(iii) Necesary Optimality condition 1/2

Let us consider an arbitrary pair (β̂, γ̂) ∈ Uad and introduce the notation

(βε, γε) = (1 − ε)(β̄, γ̄) + ε(β̂, γ̂) ∈ Uad ,

Jε = J(βε, γε) =
1
2

∫
Ω

(∣∣∣Sε(x, t)− Sobs(x)
∣∣∣2 +

∣∣∣Iε(x, t)− Iobs(x)
∣∣∣2) dx

+
δ

2

∫
Ω

(
|∇βε(x)|2 + |∇γε(x)|2

)
dx,

where (Sε, Iε) is the solution of SIS with (βε, γε) instead of (β, γ). Now, using the
hypothesis that (β̄, γ̄) is an optimal solution of IP and taking the Fréchet derivative of Jε,
we have that

dJε
dε

∣∣∣
ε=0

=

∫
Ω

(∣∣∣Sε(x, t)− Sobs(x)
∣∣∣ ∂Sε

∂ε

∣∣∣
ε=0

+
∣∣∣Iε(x, t)− Iobs(x)

∣∣∣ ∂Iε

∂ε

∣∣∣
ε=0

)
dx

+δ

∫
Ω

[
∇β̄∇

(
β̂ − β̄

)
+∇γ̄∇ (γ̂ − γ̄)

]
dx ≥ 0,

where ∂εSε and ∂εIε for ε = 0 are calculated by analyzing the sensitivities of solutions
for SIS with respect to perturbations of (β, γ).



(iii) Necesary Optimality condition 2/2

Let us consider

(zε
1 , z

ε
2 ) =

1
ε

(
Sε − S̄, Iε − Ī

)
,

Fu =
1

Sε − S̄

[
Sε

Sε + I
−

S
S + I

]
Fv =

1
Iε − Ī

[
Iε

S + Iε
−

I
S + I

]
we deduce the following system

(zε
1 )t −∆zε

1 = −βε(x)Fu Iεzε
1 − βε(x)(S̄)mFv zε

2

− (β̂ − β̄)(S̄)m (̄I)n + γε(x)zε
2 + (γ̂ − γ̄)̄I, in QT ,

(zε
2 )t −∆zε

2 = βε(x)Fu Iεzε
1 + βε(x)(S̄)mFv zε

2

+ (β̂ − β̄)(S̄)m (̄I)n − γε(x)zε
2 − (γ̂ − γ̄)̄I, in QT ,

∇zε
1 · n = ∇zε

2 · n = 0, on Γ,

zε
1 (x, 0) = zε

2 (x, 0) = 0, in Ω.

Then, denoting by (z1, z2) the limit of (zε
1 , z

ε
2 ) when ε→ 0 . . .



(iv) continous dependence DP 1/2

Lemma
Consider that the following hypotheses (SIS0)-(SIS3) are satisfied. Let us consider
that (S, I) and (S̃, Ĩ) are the corresponding solutions of SIS model with coefficients
(β, γ) ∈ Uad (Ω) and (β̃, γ̃) ∈ Uad (Ω), respectively. Then, there exist the positive
constant C such that the inequality

∥(Ŝ − S)(·, t)∥2
L2(Ω)

+ ∥(̂I − I)(·, t)∥2
L2(Ω)

≤ C
(
∥β̂ − β∥2

L2(Ω)
+ ∥γ̂ − γ∥2

L2(Ω)

)
,

holds for any t ∈ [0,T ].



(iv) continous dependence DP 2/2

Now, by notational convenience we consider δS, δI, δβ and δγ defined as follows

δS = Ŝ − S, δI = Î − I, δβ = β̂ − β, δγ = γ̂ − γ.

Then, from the system SIS for (S, I) and (Ŝ, Ŝ) we have that (δS, δI) satisfy the initial
boundary value problem

(δS)t −∆(δS) = −β̂(x)
(

Ŝ

Ŝ + Î
−

S
S + I

)
− δβ(x)

(
Ŝ

Ŝ + Î

)
+ γ̂(x)δI + γ(x)I, in ∈ QT ,

(δI)t −∆(δI) = β̂(x)

(
Ŝ

Ŝ + Î
−

S
S + I

)
+ δβ(x)

(
Ŝ

Ŝ + Î

)
− γ̂(x)δI − γ(x)I, in ∈ QT ,

∇(δS) · n = ∇(δI) · n = 0, on ∈ Γ,

(δS)(x, 0) = (δI)(x, 0) = 0, in Ω.



(v) continous dependence AP 1/2

Lemma
Consider that the following hypotheses (SIS0)-(SIS3) are satisfied. Let us consider
that (S, I) and (S̃, Ĩ) are the corresponding solutions of SIS model with coefficients
(β, γ) ∈ Uad (Ω) and (β̃, γ̃) ∈ Uad (Ω), respectively. Moreover consider that (P,Q) and
(P̃, Q̃) are the solutions of the adjoint problems for (S, I) and (S̃, Ĩ) with (Sobs, Iobs) and
(S̃obs, Ĩobs) as observations, respectively. Then, there exist the positive constant C such
that the inequality

∥(P̂ − P)(·, t)∥2
L2(Ω)

+ ∥(Q̂ − Q)(·, t)∥2
L2(Ω)

≤ C̃1

(
∥β̂ − β∥2

L2(Ω)
+ ∥γ̂ − γ∥2

L2(Ω)

)
+C̃2

(
∥Ŝobs − Sobs∥2

L2(Ω)
+ ∥̂Iobs − Iobs∥2

L2(Ω)

)
holds for any t ∈ [0,T ].



(v) continous dependence AP 2/2

We consider that δP = P̂ − P and δQ = Q̂ − Q which satisfy the system

(δP)t +∆(δP) = β̂(x)

(
Î

Ŝ + Î

)2

(P̂ − Q̂)− β(x)
(

I
S + I

)2
(P − Q), in QT ,

(δQ)t +∆(δQ) =

β̂(x)( Ŝ

Ŝ + Î

)2

− γ̂(x)

 (P̂ − Q̂)

−
(
β(x)

(
S

S + I

)2
− γ(x)

)
(P − Q), in QT ,

∇(δP) · n = ∇(δQ) · n = 0, on Γ,

(δP)(x,T ) = δS(x,T )−
(

Ŝobs(x)− Sobs(x)
)
, in Ω,

(δQ)(x,T ) = δI(x,T )−
(̂

Iobs(x)− Iobs(x)
)
, in Ω.



(vi) Stability IP 1/4

Lemma
Consider that the following hypotheses (SIS0)-(SIS3) are satisfied. Let us consider
that (S, I) and (S̃, Ĩ) are the corresponding solutions of SIS model with coefficients
(β, γ) ∈ Uad (Ω) and (β̃, γ̃) ∈ Uad (Ω), respectively. Moreover consider that (P,Q) and
(P̃, Q̃) are the solutions of the adjoint problems for (S, I) and (S̃, Ĩ) with (Sobs, Iobs) and
(S̃obs, Ĩobs) as observations, respectively. If

∫
Ω(β, γ)dx =

∫
Ω(β̃, γ̃)dx, the estimate

∥β̃ − β∥2
L2(Ω)

+ ∥γ̃ − γ∥2
L2(Ω)

≤ Ψ
[
∥S̃obs − Sobs∥2

L2(Ω)
+ ∥̃Iobs − Iobs∥2

L2(Ω)

]
,

is valid for some constant Ψ > 0.

Xiang& Liu (2015). Let us consider the notation of item (v). If there exists x0 ∈ Ω such
that (β, γ)(x0) = (β̃, γ̃)(x0) the estimate

max
x∈Ω

|(β̃ − β)(x)|2 +max
x∈Ω

|(γ̃ − γ)(x)|2 ≤ Ψ
[
∥S̃obs − Sobs∥2

L2(Ω)
+ ∥̃Iobs − Iobs∥2

L2(Ω)

]
,

is valid.



(vi) Stability IP 2/4

Xiang & Liu uses the following result:

Lemma
For ρ ∈ C[0, 1] we have maxx∈[0,1] |ρ(x)| ≤ |ρ(x0)|+ ∥∇ρ∥L2(Ω)

We use a generalized Poincaré inequality

∥ρ∥Lp(Ω) ≤ C(∥ρ∥L1(Ω) + ∥∇ρ∥Lp(Ω)) ∀ρ ∈ W 1,p(Ω).



(vi) Stability IP 3/4

Using the fact that (β, γ) and (β̃, γ̃) are solutions of IP we have∫
QT

[
(β̂ − β)

SI
S + I

− (γ̂ − γ)I
]
(P − Q)dxdt

+ Γ
[ ∫

Ω
∇β · ∇(β̂ − β)dx +

∫
Ω
∇γ · ∇(γ̂ − γ)dx

]
≥ 0, ∀(β̂, γ̂) ∈ Uad (Ω),∫

QT

[
(β̂ − β̃)

S̃ Ĩ

S̃ + Ĩ
− (γ̂ − γ̃)̃I

]
(P̃ − Q̃)dxdt

+ Γ
[ ∫

Ω
∇β̃ · ∇(β̂ − β̃)dx +

∫
Ω
∇γ̃ · ∇(γ̂ − γ̃)dx

]
≥ 0, ∀(β̂, γ̂) ∈ Uad (Ω),

Then, selecting (β̂, γ̂) = (β, γ) in the first inequality and (β̂, γ̂) = (β, γ) in the second
inequality, rearranging some terms and applying the Cauchyy-Schwarz we deduce that

Γ
[
∥∇(β̃ − β)∥2

L2(Ω)
+ ∥∇(γ̃ − γ)∥2

L2(Ω)

]
≤
∫

QT

|β̃ − β|

∣∣∣∣∣ S̃ Ĩ

S̃ + Ĩ
(P̃ − Q̃)−

SI
S + I

(P − Q)

∣∣∣∣∣ dxdt +
∫

QT

|γ̃ − γ|
∣∣∣̃I(P̃ − Q̃)− I(P − Q)

∣∣∣ xdt .



(vi) Stability IP 4/4

Γ
[
∥∇(β̃ − β)∥2

L2(Ω)
+ ∥∇(γ̃ − γ)∥2

L2(Ω)

]
≤ Θ1

[
∥β̃ − β∥2

L2(Ω)
+ ∥γ̃ − γ∥2

L2(Ω)

]
+Θ2

[
∥S̃ − S∥2

L∞(0,T ;L2(Ω)
+ ∥̃I − I∥2

L∞(0,T ;L2(Ω))

]
+Θ3

[
∥P̃ − P∥2

L∞(0,T ;L2(Ω))
+ ∥Q̃ − Q∥2

L∞(0,T ;L2(Ω))

]
≤
[
Θ1 +Θ2 +Θ3

][
∥β̃ − β∥2

L2(Ω)
+ ∥γ̃ − γ∥2

L2(Ω)

]
+Θ3

[
∥S̃obs − S∥2

L2(Ω)
+ ∥̃Iobs − I∥2

L2(Ω)

]
.

Now, considering that (β̂, γ̂), (β, γ) ∈ Uc(Ω), by the generalized Poincaré inequality, we
have that there exist a positive constant Cpoi such that

∥β̂ − β∥2
L2(Ω)

+ ∥γ̂ − γ∥2
L2(Ω)

≤ Cpoi

(
∥∇(β̂ − β)∥2

L2(Ω)
+ ∥∇(γ̂ − γ)∥2

L2(Ω)
+ ∥β̂ − β∥2

L1(Ω)
+ ∥γ̂ − γ∥2

L1(Ω)

)
= Cpoi

(
∥∇(β̂ − β)∥2

L2(Ω)
+ ∥∇(γ̂ − γ)∥2

L2(Ω)

)
.

Thus(
Γ− Γ

) [
∥∇(β̂ − β)∥2

L2(Ω)
+ ∥∇(γ̂ − γ)∥2

L2(Ω)

]
≤ Υ2

[
∥Ŝobs − Sobs∥2

L2(Ω)
+ ∥̂Iobs − Iobs∥2

L2(Ω)

]
,

which implies the desired uniqueness for Γ = (Θ1 +Θ2 +Θ3)Cpoi .



MODELLING ASSUMPTIONS



Modelling Assumptions 1/3

The mathematical model for invasion and persistence of parasites through
spatially distributed host populations assumes that [6]:

(A0) There are two independent host populations H1 and H2 which are
spatially distributed over non-coincident spatial domains Ω1 and
Ω2 of ⊂ Rd (d = 1,2,3); i.e. Ω1∩Ω2 ̸= ∅ and Ω1∩Ω2 ̸= Ωi , i = 1,2;
respectively. Here non-coincident The region Ω1 is a reservoir
where live a parasite which, in most of the cases of interest, is
benign on the population H1 and lethal on the population H2.

(A1) Each host population is subdivided into three subclasses: sus-
ceptible individuals who are capable to be infected, infective in-
dividuals who have contracted the disease and are capable to
transmitting it, and recovered individuals. The notation φ,ψ and
χ is used to represent the population densities of the subclasses
of susceptible, infective and recovered individuals from the total
population H1 = φ+ψ+χ, while u, v , and w is used to represent
the population densities of the susceptible, infective and recov-
ered subclasses of the total population H2 = u + v + w .



Modelling assumptions 2/3

(A2) The susceptible individuals in the host population H1 can contract
the disease from cross contacts with infected hosts from H1 or
with the environment.

(A3) The susceptible individuals in the host population H2 are infected
by contact with the environment but there is neither cross infec-
tion from infected hosts from H2 nor crisscross infection with H1.

(A4) There is a contaminant on the habitat or environment. The pro-
portion of contaminant is represented by c.



Modelling assumptions 3/3

(A5) There is spatial heterogeneity into the coefficients.

▶ The population H1 follow a logistic dynamic with a space de-
pendent birth-rate b(x), which is identical in each subclass,
offspring being susceptible at birth because the disease is
assumed to be benign in H1.

▶ The spatially density dependent mortality rate m(x)+k(x)H1
is considered allowing a spatially variable carrying capacity.

▶ Any demographic effect, besides a disease-induced mortal-
ity, on the population H2 is ignored.

▶ 1/λi is the duration of the infective stage in population Hi , i =
1,2.

▶ A fixed proportion w1 ∈ [0,1] of infective individuals from H1
become permanently immune, a proportion 1 − w1 ∈ [0,1]
reentering to the susceptible class.

▶ The disease can be lethal in the second host population with
a fixed survival rate ε1 ∈ [0,1].
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Modelling: governing equations

∂tφ− div(d11(x)∇φ)
= −σ11(x)φψH1

− σ31(x)cφ+ (1 − w1)λ1ψ

+b(x)H1 − (m(x) + k(x)H1)φ,
∂tψ − div(d12(x)∇ψ)

= σ11(x)φψH1
+ σ31(x)cφ− λ1ψ

−(m(x) + k(x)H1)ψ,
∂tχ− div(d13(x)∇χ)

= w1λ1ψ − (m(x) + k(x)H1)χ,


in Q1,T = Ω1×]0,T [,

∂tu − div(d21(x)∇u) = −σ32(x)cu,
∂tv − div(d22(x)∇v) = σ32(x)cu − λ2v ,
∂tw − div(d23(x)∇w) = ε1λ2v ,

 in Q2,T = Ω2×]0,T [,

∂tc = σ13(x)(1 − c)ψ̃ + σ23(x)(1 − c)ṽ − δ(x)c, in QT = (Ω1 ∪ Ω2)×]0,T [,



Modelling: initial and boundary conditions

We consider no-flux boundary conditions

d11(x)
∂φ

∂η1
= d12(x)

∂ψ

∂η1
= d13(x)

∂χ

∂η1
= 0, on Γ1,T = ∂Ω1×]0,T [,

d21(x)
∂u
∂η2

= d22(x)
∂v
∂η2

= d23(x)
∂w
∂η2

= 0, on Γ2,T = ∂Ω2×]0,T [,

where ηi are the unit normal vector to ∂Ωi and the initial conditions are

φ(x ,0) = φ0(x), ψ(x ,0) = ψ0(x), χ(x ,0) = χ0(x), in Q1,T ,

u(x ,0) = u0(x), v(x ,0) = v0(x), w(x ,0) = w0(x), in Q2,T ,

c(x ,0) = c0(x), in QT .

Moreover, we assume that c0(x) ∈ [0,1] for x ∈ Ω1 ∪ Ω2.



DEFINITIONS OF DIRECT AND INVERSE PROBLEMS



Direct Problem
Notation:

h1 = (φ,ψ, χ) σ1 = (σ11, σ31,b,m, k) D1 = diag(d11,d12,d13)

h2 = (u, v ,w) σ2 = (σ32,b,m, k) D2 = diag(d21,d22,d23)

σ3 = (σ13, σ23, δ)

h = (h1,h2, c) σ = (σ1,σ2,σ3)

Definition
The direct problem is defined as follows: Given σ,Di and the initial
conditions find h the solution of the following IBVP

∂th1 − div(D1(x)∇h1) = F (h1, c;σ1(x)) in Q1,T ,

∂th2 − div(D2(x)∇h2) = G(h2, c;σ2(x)) in Q2,T ,

∂tc = K (h1,h2, c;σ3(x)) in QT ,

Di(x)
∂hi

∂ηi
= 0 on Γi,T ,

initial conditions



Inverse Problem

Definition
The direct problem is defined as follows: Given σ,Di and the initial
conditions find h the solution of the following IBVP

∂th1 − div(D1(x)∇h1) = F (h1, c;σ1(x)) in Q1,T ,

∂th2 − div(D2(x)∇h2) = G(h2, c;σ2(x)) in Q2,T ,

∂tc = K (h1,h2, c;σ3(x)) in QT ,

Di(x)
∂hi

∂ηi
= 0 on Γi,T ,

initial conditions

Definition
The inverse problem is defined as follows: Given Di , initial conditions
and some experimental data at time T given by hobs(·,T ), find the
coefficients σ such that the solution h(·,T ) of the IBVP for σ is “very
close” to hobs(·,T ).



WELL POSEDNESS OF DIRECT PROBLEM



Notation

In order to simplify the presentation of our results and proofs we con-
sider the following notation

Lp = Lp(Ω1)× Lp(Ω2)× Lp(Ω1 ∪ Ω2),

Lp =
[
Lp(Ω1)

]5
× Lp(Ω2)× Lp(Ω1 ∪ Ω2),

Cα =
[
C0,α(Ω1)

]5
× C0,α(Ω2)×

[
C2,α

(
Ω1 ∪ Ω2\D

)]2
× C2,α(Ω1 ∪ Ω2),

with D = (∂Ω1 ∩Ω2) ∪ (∂Ω2 ∩Ω1); and analogously to Lp we consider
the notation for the functional spaces Wm,p and Hm.



Hypothesis

(H0) The sets Ω1 and Ω2 are open bounded convex sets of Rd such
that ∂Ωi are of C3,α regularity.

(H1) The functions modelling the initial conditions are non-negative
and satisfying the following regularity conditions: φ0, ψ0, χ0 are
continuous on Ω1; u0, v0, w0 are continuous on Ω2; and c0 is con-
tinuous on Ω1 ∪ Ω2\D. Moreover, we assume that c0(x) ∈ [0,1]
on Ω1 ∪ Ω2.

(H2) The diffusion coefficients di,j for (i , j) ∈ {1,2} × {1,2,3} are pos-
itive functions, bounded from below on Ωi and belong C2,α(Ωi) ∩
L∞(Ωi).

(H3) The coefficients are componentwise strictly positive on their do-
mains of definition, i.e. σ11, σ31,b,m, and k are strictly positive on
Ω1; σ32 is strictly positive on Ω2; δ is strictly positive on Ω1 ∪ Ω2;
σ13 is strictly positive on Ω1 and identically 0 outside of Ω1; σ23 is
strictly positive on Ω2 and identically 0 outside of Ω2. Moreover,
θ ∈ Cα and the birth and mortality rates are such that b(x)−m(x)
is strictly positive for all x ∈ Ω1.



Well posedness of the direct problem

Theorem (Fitzgibbon, Langlais & Morgan, 2007)
If the requirements listed above in (H0)-(H3) are met, then the direct
problem has a unique, classical, global nonnegative solution
φ,ψ, χ, u, v ,w , and c, which is componentwise non-negative; φ, ψ,
and χ are uniformly bounded on Q1 = Ω1×]0,∞[, u, v , and w , are
uniformly bounded on Q2 = Ω2×]0,∞[, and c is uniformly bounded
on Q = (Ω1 ∪ Ω2)×]0,∞[; and c(x , t) ∈ [0,1] on Q.

The proof is divided in four big parts: the local existence is followed
by Banach fixed point argument; the componentwise non-negativity
is deduced by application of the weak maximum principle for scalar
parabolic equations; the global well posedness is a consequence of
L∞ estimates of solution components; and the global existence is
proved by using the results for discontinuous coefficients and uniform
estimates using cut-off functions.



INVERSE PROBLEM RESULTS



Inverse problem

We reformulate the inverse problem as an optimization problem. Let us consider the
following cost functional

J(h,σ) =
1
2

∥∥∥(h1,h2, c)(·,T )− (hobs
1 ,hobs

2 , cobs)
∥∥∥2

L2
+

Γ

2
∥∇θ∥2

L2 , Γ > 0,

where hobs
1 = (ϕobs, ψobs, χobs), hobs

2 = (uobs, vobs,wobs). Thus the inverse problem is
formalized as the following optimization problem

Find θ ∈ Uad : J(θ) = inf
θ∈Uad

J(θ) subject to (h1,h2, c) is solution of direct problem.

where Uad := Uad (Ω1,Ω2) is the admissible set

Uad (Ω) = A(Ω1,Ω2) ∩H|[d/2]|+1

A(Ω1,Ω2) =
{
θ := (θ1,θ2,θ3) ∈ Cα : Ran(θ) ⊆

9∏
i=1

[r i , r i ] ⊂ R9
+, ∇θ ∈ L2

}



Results

The main results are the following:
(a) the existence of solutions for the inverse problem,
(b) a well defined adjoint state,
(c) the introduction of first order optimality condition,
(d) the stability of a direct problem solution with respect to the

coefficients of the reaction term,
(e) the stability of the adjoint problem solution with respect to

the coefficients of the reaction term and the observations,
(f) the uniqueness of the identification problem.



(a) the existence of solutions for the inverse problem

Theorem
Let us consider that (H0)-(H3) and the following hypothesis

(H4) The observation function (hobs
1 ,hobs

2 , cobs) belongs L2,
are valid. Moreover consider the on U := A(Ω1,Ω2) ∩ M with
M a bounded closed set of H|[d/2]|+1 containing the constant
functions. Then, there exists at least one solution of optimization
problem on U .



(b) Adjoint state 1/2
We introduce the adjoint state

∂t pi + div(Di (x)∇pi ) = qi (x ,pi , s;hi , c,θi (x)), in Qi,T , i = 1, 2,

∂t s = ς(x ,p1,p2, s; c,θ3(x)), in QT ,

(Di (x)∇hi ) · ηi = 0, on Γi,T , i = 1, 2,

pi (x ,T ) = hi (x ,T )− hobs
i (x), in Ωi , i = 1, 2,

s(x ,T ) = c(x ,T )− cobs(x), in Ω1 ∪ Ω2,

where the functions qi and ς are defined as follows

q11 =

[
σ11(x)

ψ(φ+ ψ)

(H1)2
+ σ31(x)c

]
(p12 − p11) +

(
b(x)− m(x)

)
p11

−k(x)
(

2φp11 + ψp12 + χp13

)
,

q12 = σ11(x)
φ(φ+ χ)

(H1)2
(p12 − p11) + (1 − ω1λ1 + b(x))p11 − m(x)p12 + ω1λ1(p13 − p12)

−k(x)
(
φp11 + 2ψp12 + χp13

)
+ σ13(x)(1 − c)s,

q13 = −σ11(x)
φψ

(H1)2
(p12 − p11)− b(x)p11 − k(x)

(
φp11 + ψp12 + 2χp13

)
,

q21 = σ32(x)c(p22 − p21), q22 = ελ2(p23 − p22) + σ23(x)(1 − c)s, q23 = 0,

ς = σ31(x)ψ̃(p̃12 − p̃11) + σ32(x)ṽ(p̃22 − p̃21)− (σ13(x)ψ̃ + σ23(x)ṽ + δ(x))s.



(b) Adjoint state 2/2

Theorem
Assume that the hypothesis (H0)-(H4) are satisfied, consider
that θ is the solution of optimization problem and (h1,h2, c)
is the corresponding solution of direct problem with θ instead
of θ. Then, the adjoint system is given by the system de-
fined previously. Moreover, the pair (p1,p2) is bounded in
L∞(0, t ; [H2(Ω1)]

3 × [H2(Ω2)]
3) for almost all time t in ]0,T ] and

the solution of the adjoint system is bounded in L∞(0, t ;L∞) for
almost all time t in ]0,T ].



(c) first order optimality condition

Theorem
Assume that the hypothesis (H0)-(H4) are satisfied and
consider the notation θ, (h1,h2, c) and (p1,p2, s) as is given in
Theorem for adjoint state. Then, the following inequality

∫ ∫
Q1,T

{[
(σ̂11 − σ11)

φ ψ

H1
+ (σ̂31 − σ31)

]
(p11 − p12) + bH1p11 − (m + kH1)h1 · p1

}
dxdt

+

∫ ∫
Q2,T

(σ̂32 − σ32)(p21 − p22)dxdt

+

∫ ∫
QT

{(
σ̂13 − σ13

)
(1 − c)φ̃s +

(
σ̂23 − σ23

)
(1 − c)ṽ

−(δ̂ − δ)c
}

sdxdt + Γ

∫
Ω1

∇θ1 · ∇(θ̂1 − θ1)dx + Γ

∫
Ω2

∇θ2 · ∇(θ̂2 − θ2)dx

+Γ

∫
Ω1∪Ω2

∇θ3 · ∇(θ̂3 − θ3)dx
]
≥ 0, ∀θ̂ ∈ Uad ,

is satisfied.



(d)-(e) stability of a direct and adjoint problem
solutions . . .

Theorem
Assume that the hypothesis (H0)-(H4) are valid. Then, consider-
ing the norm induced topologies of L2, L∞(0, t ;L2), and L2 ×L2

we have that the assertions
(i) The mapping θ 7→ (h1,h2, c) is continuous from Uad ⊂ L2

to L∞(0, t ;L2) for almost all time t in ]0,T ].
(ii) The mapping (θ,hobs

1 ,hobs
2 , cobs) 7→ (p1,p2, s) is

continuous from Uad × L2 ⊂ L2 × L2 to L∞(0, t ;L2) for
almost all time t in ]0,T ].

are satisfied.



(f) the uniqueness of the identification problem . . .

Theorem
Let us define the set

Uc =
{
θ ∈ U :

∫
Ω
θ(x)dx = c, c = (c1, . . . , c9) ∈ R9

+

}
with U the set defined on Theorem for existence of solutions.
Then, for each c, the solution of optimization problem is uniquely
defined, up to an additive constant, on Uc in the L2 sense for any
large enough regularization parameter Γ.



MATHEMATICAL MODEL FOR TUMOR GROWTH



Direct problem: Mathematical model
The cancerous cells invasion taking place in a bounded domain Ω ⊂ Rd , (d = 1, 2, 3)
with smooth boundary ∂Ω can be modelled by the reaction-diffusion system:

ut − d1∆u = α1g1(u)u − (β1v + γ1w)u in QT ,

vt − d2∆v = α2g2(v)v − (β2u + γ2w)v in QT ,

wt − d3∆w= −α3w + U in QT ,

u(x , 0) = u0(x), v(x , 0) = v0(x), w(x , 0) = w0(x) in Ω,

∂u
∂n

=
∂v
∂n

=
∂w
∂n

= 0 on ΓT .

where u(x , t) is the tumor cells density, v(x , t) the normal cells density and w(x , t) is
the drug concentration.

- QT := Ω× (0,T ) and
ΓT := ∂Ω× (0,T ).

- α1(x), α2(x) growth rates;
- α3(x) reabsorption rate for the

drug;
- β1(x), β2(x) death rates by

competition;

- γ1(x), γ2(x) death rates by
treatment;

- U(x , t) ≥ 0 drug injected;

- d1, d2, d3 > 0 are the diffusivity;

- n is the unit normal.



Parameter calibration problem

We consider the direct problem

∂t u1 − d1∆u1 =
(
θ1g1(u1)− (θ4u2 + θ6u3)

)
u1, in QT := Ω× (0,T ),

∂t u2 − d2∆u2 =
(
θ2g2(u2)− (θ5u1 + θ7u3)

)
u2, in QT ,

∂t u3 − d3∆u3 = −θ3u3 + U, in QT ,

(u1, u2, u3)(x , 0) = (u1,0, u2,0, u3,0)(x), in Ω,

∇u1 · n = ∇u2 · n = ∇u3 · n = 0, on ΓT := ∂Ω× (0,T ).

Inverse problem is defined as follows:

Given uobs and u0 defined on Ω, find the set of real functions defining the compo-
nents of θ defined on Ω, such that the solution u of the direct problem satisfy the
final time condition u(x ,T ) = uobs(x) for x ∈ Ω.



Optimal control problem

Defining J,J and the admissible set Sad (Ω) as follows

J(u) =
1
2

∥∥∥u(·,T )− uobs
∥∥∥2

[L2(Ω)]3
, J (θ) = J(uθ) +

Γ

2
∥θ∥2

[L2(Ω)]7
,

Sad (Ω) =

{
θ ∈ [L2(Ω)]7 : θ(x) ∈

7∏
k=1

[0, θmax
k ] a.e. x ∈ Ω

}
,

we recast the parameter identification problem as the following optimization problem:

Given uobs and u0, find θ such that:
J (θ) := min

θ∈Sad (Ω)
J (θ) subject to uθ solution of direct problem.

}



NUMERICAL SOLUTION



METHODOLOGY



Continous

Observation

 

Continous adjoint

∆

Continous Cost

(p,q) J

Continous gradient

J

Continous State

(S,I) 

Discrete adjoint

∆

Discrete Cost

(p  ,q  ) 

discrete gradient

J

Discrete State

Continous
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Discretized
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∆ ∆ ∆ ∆ ∆ ∆



ODE MODELS



ODE model

d
dt

S(t) = Λ− µS(t)−
β(t)S(t) I(t)

1 + kI(t)
,

d
dt

I(t) =
β(t)S(t) I(t)

1 + kI(t)
− (µ+ γ) I(t)− m.


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Adjustment of the time series using ARIMA(1,2,0) (0,1,0) [6] model 

d
dt

S(t) = 400 − 0.02 S(t)−
3 [0.2 + sin(πt/3)]S(t) I(t)

10000 + 100 I(t)
,

d
dt

I(t) =
3 [0.2 + sin(πt/3)]S(t) I(t)

10000 + 100 I(t)
− (0.02 + 0.04) I(t)− 10,

S(0) = 14000, I(0) = 600.





ODE Inverse

Minimize J(µ, γ) = δ
∥∥∥Iµ,γ − Iobs

∥∥∥2

L2(0,T )
:= δ

∫ T

0
(Iµ,γ − Iobs)2(τ)dτ
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Initial parameters of the gradient

real parameters

initial estimate of the parameters

 = 0.020;   = 0.040

estimations:

 = 0.005;   = 0.010
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Final parameters of the gradient

real parameters

final estimate of the parameters

 = 0.020;   = 0.040

estimations:

 = 0.0206;   = 0.0387
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x 10
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Observation 
parameters Identified

parameters

Initial guess
parameters

µ γ
observation parameters 0.0200 0.0400
initial guess parameters 0.0005 0.0100
identified parameters 0.0206 0.0387

F. Novoa-Muñoz, S. Espinoza, A, Coronel, I. Hess (2019)



DIFUSION IDENTIFICATION



Finite volume approximation of direct problem

Sn+1
k − Sn

k

∆t
=

1
∆x2

[
d1(xk )Sn+1

k+1 −
(

d1(xk ) + d1(xk−1)
)

Sn+1
k + d1(xk−1)Sn+1

k−1

]
− β(xk )Sn+1

k In
k + γ(xk )In+1

k

In+1
k − In

k

∆t
=

1
∆x2

[
d2(xk )In+1

k+1 −
(

d2(xk ) + d2(xk−1)
)

In+1
k + d2(xk−1)In+1

k−1

]
+ β(xk )Sn+1

k In
k − γ(xk )In+1

k

Sn
1 − Sn

0

∆x
=

Sn
M+1 − Sn

M

∆x
= 0,

In
1 − In

0

∆x
=

In
M+1 − In

M

∆x
= 0,

S0
k = S0(xk ), I0

k = I0(xk ).

(
IM + LS +∆tβDIn −∆tγ
−∆tβDIn IM + LI +∆tγ

)(
Sn+1

In+1

)
=

(
Sn

In

)

Numerical scheme 1D: Liu & Yang (2022) . . . has several properties: preserves the
biological meaning (such as positivity) and is unconditionally convergent.



Inverse problem

∂t S − diver(d1(x)∇S) = −β(x)SI + γ(x)I, in QT ,

∂t I − diver(d2(x)∇I) = β(x)SI − γ(x)I, in QT ,

∇S · n = ∇I · n = 0, in ΓT ,

(S, I)(x , 0) = (S0, I0)(x), on Ω,

Parameter identification problem: The diffusion coefficients d1 and d2 depend of a fi-
nite number of parameters denoted by e = (e1, . . . , en) which is explicitly denoted by
di (x) = di (x ; e) for i = 1, 2.

inf
e∈Rn

J∆(e), J∆(e) = J∆(S∆, I∆),

subject to (S∆, I∆) solution of numerical scheme for direct problem,

J∆(S∆, I∆) :=
∆x
2

M∑
k=1

(SN
k − Sobs

k )2 +
∆x
2

M∑
k=1

(IN
k − Iobs

k )2.



Adjoint scheme and discrete gradient

Pn
k − Pn+1

k
∆t

=
1

∆x2

[
d1(xk−1)Pn

k−1 −
(

d1(xk ) + d1(xk−1)
)

Pn
k + d1(xk )Sn+1

k+1

]
− β(xk )(Pn

k − Qn
k )

Qn
k − Qn+1

k
∆t

=
1

∆x2

[
d2(xk−1)Qn+1

k+1 −
(

d2(xk ) + d2(xk−1)
)

In+1
k + d2(xk )Qn+1

k+1

]
+
(
β(xk )Sn

k − γ(xk )
)
(Qn

k − Pn
k )

Pn
1 − Pn

0

∆x
=

Pn
M+1 − Pn

M

∆x
= 0,

Qn
1 − Qn

0

∆x
=

Qn
M+1 − Qn

M

∆x
= 0,

PN
k = |SN

k − Sobs
k |, QN

k = |IN
k − Iobs

k |.

∇eJ∆(e)

= −
∆t
∆x

N∑
n=0

M∑
k=1

[
∇ed1(xk )Sn

k+1 −
(
∇ed1(xk ) +∇ed1(xk−1)

)
Sn

k +∇ed1(xk−1)Sn
k−1

]
Pn

k

+
[
∇ed2(xk )In

k+1 −
(
∇ed2(xk ) +∇ed2(xk−1)

)
In
k +∇ed2(xk−1)In

k−1

]
Qn

k

+ Γ
M+1∑
k=0

[
d1(xk )∇ed1(xk ) + d2(xk )∇ed2(xk )

]
.



Example 1: Identification of a constant diffusion
We consider

β(x) = 0.000284535, γ(x) = 0.144, (S0, I0)(x) =
1
2
(x , 2 − x),

e = (e1, e2), d1(x ; e) = e1, d2(x ; e) = e2.

We construct the observation profile at T = 0.6 by considering a numerical simulation of
the direct problem with eobs = (0.5, 0.5), M = 200 and N = 100000 (i.e., ∆x = 5E − 3
and ∆x = 6E − 6).

I



Example 1: inital guess e = (0.1, 0.1), e∞ = (0.52294, 0.55149), eobs = (0.5, 0.5)
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Example 2: Identification of a quadratic diffusion
function

We consider β(x) = 0.000284535, γ(x) = 0.144, and

I0(x) =


0, x ≤ 0.3,
100000x − 30000, 0.3 < x ≤ 0.5,
−100000x + 70000, 0.5 < x ≤ 0.7,
0, otherwise.

d1(x ; e) = 0.1 + e1x + e2x2, d2(x ; e) = 0.2 + e3x + e4x2.

We construct the observation profile at T = 0.6 by considering a numerical simulation
of the direct problem with eobs = (0.5, 0.5, 0.5, 0.5), M = 200 and N = 100000 (i.e.,
∆x = 5E − 3 and ∆x = 6E − 6).

I



Example 2: e0 = 0.1 . . . e∞ = (0.75143, 0.42256, 0.95842, 0.21146), eobs = 0.5 . . .
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