Exact controllability to zero for general linear parabolic equations

I. Gayte-Delgado and I. Marín-Gayte

Universidad de Sevilla, University Loyola-Andalucía, Spain.

Workshop on Pdes and Control 3rd- 5th September 2025 Sevilla, Spain Why do we care about finding Carleman's inequalities?

An observability inequality

$$\int_{\Omega} |\varphi(0)|^2 dx \leq C \int \int_{\omega \times (0,\,T)} |\varphi|^2 dx dt$$

The problem of exact control to zero

$$\begin{cases} y_t - \Delta y = u1_\omega \text{ in } Q = \Omega \times (0, T) \\ y = 0 \text{ on } \Sigma = \partial \Omega \times (0, T) \\ y(0) = y_0 \text{ in } \Omega \end{cases}$$

$$y(T) = 0$$

Disadvantage: Carleman's inequality is true for functions in $C^2(\bar{Q})$.

What about the totally distributed control?

- It has not practical interest
- ► The existence of a control is easily guaranteed

Our motivation: the glioblastoma model

$$y_t - \nabla \cdot (D(x)\nabla y) = \rho y$$

Our approach:

- 1. Obtaining a totally distributed control from "any positive function" and for $y_0 \ge 0$
- 2. For any y_0 , apply the results to y_0^+ and to y_0^-
- 3. Passing to a partially distributed control

Let be $u \in L^2(\Omega \times (0, T), u \ge c > 0$, $y_0 \in L^2(\Omega)$, $y_0 \ge 0$, Is there a function $v^* \ge 0$ such that

$$||y(T)||\Psi_{v^*}(T) - ||\Psi_{v^*}(T)||y(T)||$$

has a constant sign in Ω ?

$$y_t - \Delta y = u$$
 $(\Psi_{v^*})_t - \Delta \Psi_{v^*} = v^*$
 $y|_{\Sigma} = 0$ $\Psi_{v^*}|_{\Sigma} = 0$
 $y(0) = y_0$ $\Psi_{v^*}(0) = y_0$

We write $-\Delta$ for simplicity

Observe that this scalar product

$$(\|y(T)\|\Psi_{v^*}(T) - \|\Psi_{v^*}(T)\|y(T), \|y(T)\|\Psi_{v^*}(T) + \|\Psi_{v^*}(T)\|y(T))$$

is zero. Then,

$$||y(T)||\Psi_{v^*}(T) - ||\Psi_{v^*}(T)||y(T) = 0$$

and a control is

$$\hat{u} = \frac{\|y(T)\|v^* - \|\Psi_{v^*}(T)\|u}{\|y(T)\| - \|\Psi_{v^*}(T)\|}$$

Idea: building a sequence $\{v_k\}_k$ such that

$$\|\Psi_{\nu_{k-1}}(T)\|y(T) - \|y(T)\|\Psi_{\nu_{k}}(T) \le 0$$

and passing to the limit Difficulties:

- ▶ It is necessary a maximum principle weaker than the classical one, a maximum principle at the final time T
- ▶ How to avoid that the sequence converges to u?

The result when u is totally distributed

Theorem

Let be $u \in L^2(\Omega \times (0, T))$, $u \ge c > 0$ in $\Omega \times (0, T)$, $y_0 \in L^2(\Omega)$, $y_0 \ge 0$. Then, there exists $v^* \in L^2(\Omega \times (0, T))$, $0 \le v^* \le u$, $\|\Psi_{v^*}(T)\| < \|y(T)\|$, such that

$$\hat{u} = \frac{\|y(T)\|v^* - \|\Psi_{v^*}(T)\|u}{\|y(T)\| - \|\Psi_{v^*}(T)\|}$$

is an exact control to zero in $\Omega \times (0, T)$.

The proof: a maximum principle at the final time

Theorem

Let be $\beta \in C^1([0, T])$ verifying

$$\beta > 0$$
, $\max_{[0, T]} \beta = \beta(T)$

and let be $w \in W(0, T)$ such that

$$w_t - \Delta w \geq 0$$
 $w|_{\Sigma} = 0$ $w(0) \geq 0$.

Then, the solution z of the problem

$$\begin{cases} z_t - \Delta z = -\beta' w \\ z|_{\Sigma} = 0 \\ z(0) = z_0 \le 0. \end{cases}$$

verifies

2. Building a sequence $\{v_k\}_k$ by recurrence, such that

$$0 \le v_k \le v_{k+1} \le u$$

$$v_k = \frac{1}{2}u$$
 in $B \times I$, B a ball in Ω , I an interval in $(0, T)$

$$\|\Psi_{\nu_{k-1}}(T)\|y(T) - \|y(T)\|\Psi_{\nu_k}(T) \le 0$$

How to build this sequence? An increasing sequence, built by recurrence

$$0 \le v_1 \le u, \quad v_1 = \frac{1}{2}u \text{ in } B \times I$$

$$\beta_1' \le \frac{(\|y(T)\| - \|\Psi_{\nu_1}(T)\|)c}{\sup_{\Omega \times (0, T) \setminus \tilde{I}} w_1} \tag{1}$$

$$I \subsetneq \tilde{I} \subset (0, T)$$

$$\beta_1' < -\frac{\|\Psi_{v_1}(T)\| \sup_{B \times I} u}{\inf_{B \times I} w_1} \text{ in } I$$
 (2)

$$\beta_1' \le 0 \text{ in } \tilde{I}$$
 (3)

We define $\tilde{v_1}$:

$$\|\Psi_{v_1}(T)\|u-\|y(T)\|\tilde{v}_1=-\beta_1'w_1$$

It verifies

$$ilde{v_1} \leq u$$
 $ilde{v_1} < 0 ext{ in } B imes I$

Then,

$$v_2 = \max(v_1, \tilde{v_1})$$

And it satisfies

$$v_1 \le v_2$$

$$0 \le v_2 \le u$$

$$v_2 = v_1 = \frac{1}{2}u$$

$$\|\Psi_{\nu_1}(T)\|y(T) - \|y(T)\|\Psi_{\nu_2}(T) \le \|\Psi_{\nu_1}(T)\|y(T) - \|y(T)\|\Psi_{\tilde{\nu_1}}(T) \le 0$$

3. Passing to the limit

$$\exists \lim v_k = v^*$$

4. Obtaining the control

Since

$$\Psi_{v^*}(T) \|y(T)\| - \|\Psi_{v^*}(T)\| y(T) = 0$$

$$\hat{u} = \frac{\|y(T)\|v^* - \|\Psi_{v^*}(T)\|u}{\|y(T)\| - \|\Psi_{v^*}(T)\|}$$

The partially distributed control

Theorem

Let be $u \in L^2(\Omega \times (0,T))$, $u \ge c > 0$ in $\Omega \times (0,T)$, $y_0 \in L^2(\Omega)$, $y_0 \ge 0$, $\omega \subset \Omega$ an open set. Then, there exists $v^* \in L^2(\Omega \times (0,T))$, $v^* = 0$ in $\Omega \setminus \omega \times (0,T)$, $v^* \ge 0$ such that

$$\hat{u} = \frac{\|y(T)\|v^* - \|\Psi_{v^*}(T)\|u1_{\omega}}{\|y(T)\| - \|\Psi_{v^*}(T)\|}$$

is an exact control to zero in $\omega \times (0, T)$.

The proof

1. Defining

$$u_n = \begin{cases} u & \text{if} & x \in \omega \\ \frac{1}{n}u & \text{if} & x \in \Omega \setminus \omega \end{cases}$$

and applying the previous theorem to each u_n ,

$$\exists v_n^*$$

2. Passing to the limit in n:

$$u_n \rightarrow u 1_\omega$$

 v_n^* weakly converges to v^*

3. The states $\Psi_{\nu_n^*}(T)$ converge strongly in $L^2(\Omega)$ to $\Psi_{\nu^*}(T)$

4. Since
$$0 \le v_n^* \le u_n$$
,

$$v^* = 0 \text{ in } \Omega \setminus \omega \times (0, T)$$

Conclussions

- Obtaining a control from any function u
- ► The solution of a linear parabolic problem can be written by a fixed point equation

$$y(T) = ||y(T)|| \frac{\Psi_{v^*}(T)}{||\Psi_{v^*}(T)||}$$

It is possible to control with discontinuous diffusion coefficients and boundary $C^{0,1}$

- Benabdallah, A.; Dermenjian, Y.; Thevenet, L. Carleman estimates for some non-smooth anisotropic media. *Comm. Partial. Differ. Equations* **2013**, *38*, 1763–1790.
- Fernández-Cara, E.; Guerrero, S. Global Carleman inequalities for parabolic systems and applications to controllability. *SIAM J. Control Optim.* **2006**, *45*, 1399–1446.
- Fernández-Cara, E.; Zuazua, E. On the null controllability of the one-dimensional heat equation with BV coefficients. *Comput. Appl. Math.* **2002**, *21*, 167–190.
- Gayte Delgado, I.; Marín-Gayte, I. A new method for the exact controllability of linear parabolic equations. *Mathematics* **2025**, *13*, 344, https://doi.org/10.3390/math13030344
- K.R. Swanson, E.C. Alvord, J.D. Murray, *Dynamics of a model for brain tumors reveals a small window for therapeutic intervention*, Mathematical models in cancer (Nashville, TN, 2002). Discrete Contin. Dyn. Syst. Ser. B **4** (2004), no. 1, 289-295.