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Navier-Stokes equations



Navier-Stokes equations

� The Navier-Stokes equations describe the time evolution of the

velocity of a homogeneous incompressible viscous fluid

∂tu + (u · ∇)u +∇p = ∆u,

div u = 0, (NS)

u(x , 0) = u0(x),

where

� u = u(x , t) : Rn × (0,∞) → Rn is the fluid velocity and

� p = p(x , t) : Rn × (0,∞) → R is the pressure.

� u · ∇ =
n∑

i=1

ui∂xi .
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Navier-Stokes equations

� At least formally, we have the energy equality

1

2

d

dt
∥u(t)∥2L2 = −∥∇u(t)∥2L2 .

� It is natural to ask whether ∥u(t)∥L2 goes to zero or not when time

goes to infinity.

� In the last paragraph of his article, Leray (1934) stated that he did

not know an answer to this question.

N.B. I do not know if W (t) goes necessarily to 0 when t grows

indefinitely.

� Here W (t) refers to the L2(R3)-norm of the weak solution to (NS)

that Leray constructed.

3



Navier-Stokes equations

� Using different techniques, Kato (1984) and Masuda (1985) showed

lim
t→∞

∥u(t)∥L2 = 0,

but they did not provide a rate of decay.

� Decay results for weak solutions using Fourier Splitting Method are

due to M.E. Schonbek (1985,1986): for initial data

u0 ∈ Lp(Rn) ∩ L2(Rn), n ≥ 3, with 1 ≤ p < 2, then

∥u(t)∥2L2 ≤ C (1 + t)−
n
2 (

2
p−1), t > 0.

� Note that the decay rate is determined by the Lp part of the initial

datum u0.

� M.E. Schonbek (1986) also proved that if u0 is just in L2, then there

are solutions that do not have a uniform algebraic decay rate.
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Navier-Stokes equations

� Principle: “decay rate is determined by small frequencies of initial

datum”.

� Given u0 ∈ L2(Rn) we associate a decay character r∗ = r∗(u0),

− n
2 < r∗ < ∞ which measures its “algebraic order” near the origin.

Roughly speaking says that

|û0(ξ)| ≈ |ξ|r
∗
when |ξ| ≈ 0.

� Studied by Bjorland and M.E. Schonbek (2009), Niche and M.E.

Schonbek (2015) and Brandolese (2016).

� For wide family of dissipative linear operators L like Laplacian,

solutions to linear system obey

C1(1 + t)−(
n
2+r∗) ≤ ∥etLu0∥2L2 ≤ C2(1 + t)−(

n
2+r∗).
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Navier-Stokes: decay results



Navier-Stokes: decay results

� For solutions to Navier-Stokes equations, for u0 ∈ L2(R3) with

r∗ = r∗(u0), it holds

∥u(t)∥2L2 ≤ C (1 + t)−min{ 3
2+r∗, 52}.

See Bjorland and M.E. Schonbek (2009), Niche and M.E. Schonbek

(2015).

� Linear vs nonlinear part contribution: if r∗ ≤ 1, decay as linear part;

if r∗ > 1, decay as nonlinear part.

� For u0 ∈ Hs(R3), s ≥ 1, it holds

∥u(t)∥2
Ḣs ≤ C (1 + t)−(s+min{ 3

2+r∗, 52}).

See Niche and M.E. Schonbek (2015).
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Navier-Stokes: decay results

� We could ask whether similar decay results can be obtained in

function spaces X where the Navier-Stokes equations can be solved

in R3 but where u does not necessarily have finite L2-norm.

� A particularly important such family is that of critical spaces, namely

those for which the natural scaling

uλ(x , t) = λu(λx , λ2t)

leads to a new solution uλ whose norm is invariant, i.e.

∥uλ∥X = ∥u∥X , for all λ > 0.

� As examples of these spaces X in Rn we mention

Ḣ
n
2−1; Ln; Ḃ

−1+ n
p

p,∞ , p ≥ n; Ḃ−1
∞,∞.
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Navier-Stokes: decay results

� Ḣ
1
2 (R3) is critical for the Navier-Stokes equations.

� For small u0 ∈ Ḣ
1
2 (R3), mild solutions obey

lim
t→∞

∥u(t)∥
Ḣ

1
2
= 0.

See Gallagher, Iftimie and Planchon (2002).

� No decay results in Ḣ
1
2 (R3), there are “technical issues”.
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Navier-Stokes: decay results

Our decay result: big picture

� We prove algebraic decay for solutions to Navier-Stokes equations in

the critical space Ḣ
1
2 (R3) for mild solutions.

� Main ideas for the proof:

� Ḣ
1
2 (R3)-norm is a Lyapunov function,

� rigorous a priori estimates,

� Fourier Splitting Method and Decay Character.
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Fourier Splitting Method

� The Fourier Splitting Method was developed by M.E. Schonbek to

study decay of energy for solutions to parabolic conservations laws

(1980) and to Navier-Stokes equations (1985, 1986).

� It rests on the observation that for these equations for large enough

times, remaining energy is concentrated at the low frequencies.

� The method amounts to estimating a differential inequality for the

L2-norm, which is bounded from above by the average of the

solution in a small, time dependent shrinking ball around the origin

in frequency space.
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Decay Character

Let

Pr (v0) = lim
ρ→0

ρ−2r−n

∫
B(ρ)

∣∣v̂0(ξ)∣∣2 dξ,
where B(ρ) denotes the ball at the origin with radius ρ.

Definition

The decay character of v0 ∈ L2(Rn), denoted by r∗ = r∗(v0) is the

unique r ∈
(
− n

2 ,∞
)
such that 0 < Pr (v0) < ∞, provided that this

number exists. We set

r∗ =

{
− n

2 , if Pr (v0) = ∞ for all r ∈
(
− n

2 ,∞
)

∞, if Pr (v0) = 0 for all r ∈
(
− n

2 ,∞
)
.

� It is possible to explicitly compute the decay character for many

important examples.

� When v0 ∈ Lp(Rn) ∩ L2(Rn) for 1 < p < 2 and v0 /∈ Lp̄(Rn) for

p̄ < p, we have that r∗(v0) = −n
(
1− 1

p

)
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Navier-Stokes: decay results

Theorem (Ikeda, Kosloff, Niche, P. (2024))

Let u0 ∈ Ḣ
1
2 (R3), with div u0 = 0 and ∥u0∥

Ḣ
1
2
< ϵ, for small enough

ϵ > 0 and − 3
2 < q∗ = r∗(Λ

1
2 u0) < ∞. Then, for any mild solution to

(NS), we have that

∥u(t)∥2
Ḣ

1
2
≤ C (1 + t)−min{ 3

2+q∗,1}.

� Notation: Λ = (−∆)
1
2 .

� Improves result by Gallagher et al (2002).

� As in the L2 case the linear and nonlinear parts drive the decay for

different sets of initial data.
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Sketch of proof in critical space

� Ḣ
1
2 -norm is a Lyapunov function,

∥u(t)∥2
Ḣ

1
2
≤ ∥u(s)∥2

Ḣ
1
2
, t ≥ s.

See Bahouri et al. (2011).

� Then

1

2

d

dt
∥u(t)∥2

Ḣ
1
2
= −∥∇u(t)∥2

Ḣ
1
2
− ⟨Λ 1

2 u(t),Λ
1
2P∇ · (u ⊗ u)(t)⟩.

� As

⟨u,P∇ · (u ⊗ u)⟩
Ḣ

1
2
≤ C∥u∥

Ḣ
1
2
∥∇u∥2

Ḣ
1
2

then
1

2

d

dt
∥u(t)∥2

Ḣ
1
2
≤ −

(
1− C∥u(t)∥

Ḣ
1
2

)
∥∇u(t)∥2

Ḣ
1
2
.

13



Sketch of proof in critical space

� As solution is mild, small initial data in Ḣ
1
2 leads to

1

2

d

dt
∥u(t)∥2

Ḣ
1
2
≤ −C∥∇u(t)∥2

Ḣ
1
2
.

which is analogous to the energy inequality but for the Ḣ
1
2 -norm.

� We consider a ball B(t) around the origin in frequency space with

continuous, time-dependent radius r(t) such that

B(t) =

{
ξ ∈ R3 : |ξ| ≤ r(t) =

(
g ′(t)

Cg(t)

) 1
2

}
,

with g an increasing continuous function such that g(0) > 0.

� We then adapt the Fourier Splitting Method to this context to obtain

d

dt

(
g(t)∥Λ 1

2 u(t)∥2L2

)
≤ g ′(t)

∫
B(t)

∣∣|ξ| 12 |û(ξ, t)∣∣2 dξ.
� A pointwise estimate for

∣∣|ξ| 12 û(ξ, t)∣∣2 in B(t) with a carefully

chosen decreasing radius g(t), leads to the result.
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Navier-Stokes-Coriolis equations



Navier-Stokes-Coriolis

� Similar results are obtained for mild solutions to the

Navier-Stokes-Colioris equations

∂tu + (u · ∇)u +∇p +Ω e3 × u = ∆u,

div u = 0, (NSC)

u(x , 0) = u0(x),

for constant rotation velocity Ω around e3 = (0, 0, 1).

� These equations are a prototype for geophysical models with strong

rotation around a fixed axis, this being modelled by the Coriolis term.

� Rotation of Earth is important: Earth’s rotation speed at Equator

≈ 1700 km/h, typical velocity on oceans/atmosphere O(10 km/h).

� Rotation of Earth, then Coriolis Force.
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Navier-Stokes-Coriolis

� Ḣ
1
2 (R3) is critical for the Navier-Stokes-Coriolis equations.

� For u0 ∈ Ḣ
1
2 (R3), Iwabuchi and Takada (2013) proved existence of

mild solutions for fast enough rotation (but bound depends on

datum profile instead of its norm) such that

u ∈ C ([0,∞); Ḣ
1
2 (R3)) ∩ L4([0,∞); Ḣ

1
2
3 (R

3)).
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Navier-Stokes-Coriolis

Theorem (Ikeda, Kosloff, Niche, P. (2024))

Let u0 ∈ Ḣ
1
2 (R3), with div u0 = 0 and ∥u0∥

Ḣ
1
2 (R3)

< ϵ, for small enough

ϵ > 0. Then, there exists ω(u0) > 0 such that for any Ω with

|Ω| > ω(u0), if − 3
2 < q∗ = r∗(Λ

1
2 u0) < ∞, then, for any mild solution

to (NSC), we have that

∥u(t)∥2
Ḣ

1
2
≤ C (1 + t)−min{ 3

2+q∗,1}.

� Improves result by Iwabuchi and Takada (2013).

� Same decay as for the Navier-Stokes equations.

� Proof is similar to that the decay for solutions to (NS).

� The main difference for the Navier-Stokes-Coriolis equations lies on

the initial set up given that the Coriolis term does not contribute to

the energy estimates.
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Navier-Stokes-Coriolis

Some comments

� We have to show that Ḣ
1
2 (R3)-norm is a Lyapunov function.

� Semigroup associated to (NSC) has some subtle dispersive features.

� Spaces where Fixed Point Theorem is used look “strange” but then

provide right setting for some estimates in the proof of decay

(criticality).

� Form of symbol matrix associated to semigroup does not allow the

direct use of results in Niche and M.E. Schonbek (2015) concerning

decay of linear part, have to tweak things around.

18



Energy-critical nonlinear heat

equation



Energy-critical nonlinear heat equation

The energy-critical nonlinear heat equation in Rn,

∂tu = ∆u + |u|
4

n−2 u,

u(x , 0) = u0(x) ∈ Ḣ1(Rn), (nNHE)

where n ≥ 3, has recently been extensively studied due to its rich

structure.
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Energy-critical nonlinear heat equation

� Using the natural scaling

uλ(x , t) = λ
n−2
2 u(λx , λ2t), λ > 0,

from a solution u we obtain a new one uλ such that in the critical

space Ḣ1(Rn) we have

∥uλ(t)∥Ḣ1 = ∥u(t)∥Ḣ1 , t > 0.

� This scaling leaves the energy

E (u(t)) =
1

2

∫
Rn

|∇u(t)|2 dx − n − 2

2n

∫
Rn

|u(t)|
2n

n−2 dx ,

invariant, i.e. E (uλ(t)) = E (u(t)), for all t, λ > 0. Moreover, each

of the terms is also invariant by this scaling.
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Energy-critical nonlinear heat equation

� Equation (nNHE) has a stationary solution with remarkable

properties, the Aubin-Talenti bubble (1976)

W (x) =
1(

1 + 1
n(n−2) |x |2

) n−2
2

,

which is, up to the previous scaling and translations, the unique

extremum of the Sobolev embedding Ḣ1(Rn) ⊂ L
2n

n−2 (Rn), i.e. W

realizes the equality in

∥u∥
L

2n
n−2

∥u∥Ḣ1

≤ C , for C =

√
1

πn(n − 2)

(
Γ(n)

Γ
(
n
2

)) 1
n

.

21



Energy-critical nonlinear heat equation

� Recently, Gustafson and Roxanas (2018) proved global existence of

mild solutions to (4NHE) provided the initial datum u0 is small

compared to the ground state and established its behaviour at

infinity.

� Let u0 ∈ Ḣ1(R4) such that

E (u0) ≤ E (W ), ∥∇u0∥L2 ≤ ∥∇W ∥L2 .

Then the mild solution to (4NHE) is global and dissipates, i.e.

lim
t→∞

∥u(t)∥Ḣ1 = 0.

� We extend the result to (nNHE) and also we prove the decay of the

Ḣ1 norm of solutions to (nNHE).
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Decay for energy-critical nonlinear heat equation

Decay of the Ḣ1-norm of solutions to (nNHE)

Theorem (Kosloff, Niche, P. (2024), Ikeda, Niche, P. (2025))

Let n ≥ 3 and u be a dissipative solution. Let q∗ = r∗ (Λu0) > − n
2 .

Then we have

∥u(t)∥2
Ḣ1 ≤

 C (1 + t)−min{ n
2+q∗,1}, n ≤ 10

C [ln(e + t)]−2, n > 10

for large enough t.

� The decay character can be used to establish the role of the linear

and nonlinear part of the solution in the decay.
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Decay for energy-critical nonlinear heat equation

Some comments

� We have to show that Ḣ1(Rn)-norm is a Lyapunov function,

� For n > 10 we can only prove an inverse logarithmic decay rate.

� This is the first decay estimate we obtain for any n ≥ 3, which we

then use to bootstrap in order to obtain faster decay rates.

� However, the nonlinearity has such a structure that for n > 10 we

cannot obtain improvements in the pointwise estimates needed.

24



Hardy-Sobolev parabolic

equation



Hardy-Sobolev parabolic equation

The Hardy-Sobolev parabolic equation on Rn,

∂tu = ∆u + |x |−γ |u|2
∗(γ)−2u

u(x , 0) = u0(x) ∈ Ḣ1(Rn), (HS)

where n ≥ 3, 0 < γ < 2 and

2∗(γ) =
2(n − γ)

n − 2

is the critical Hardy-Sobolev exponent.
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Hardy-Sobolev parabolic equation

� Equation (HS) is energy-critical because the energy

Eγ(u(t)) =
1

2

∫
Rn

|∇u(t)|2 dx − 1

2∗(γ)

∫
Rn

|u(t)|2∗(γ)

|x |γ
dx (1)

is invariant under the natural scaling

uλ(x , t) = λ
2−γ

2∗(γ)−2 u(λx , λ2t) = λ
n−2
2 u(λx , λ2t), λ > 0. (2)

� Both terms in (1) are invariant under (2).

� Ḣ1(Rn) is a critical space for (HS).

� Chikami, Ikeda and Taniguchi (2021) gave conditions on the initial

datum to the mild solution to (HS) be global and dissipate

lim
t→∞

∥u(t)∥Ḣ1 = 0.
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Hardy-Sobolev parabolic equation

Decay of the Ḣ1-norm of solutions to (HS)

Theorem (Ikeda, Niche, P. (2025))

Let n ≥ 5, u be a dissipative solution of (HS) and q∗ = r∗ (Λu0) > − n
2 ,

where Λ = (−∆)1/2. Then we have

∥u(t)∥2
Ḣ1 ≤

{
C (1 + t)−min{ n

2+q∗,1}, n ≤ 10− 4γ,

C [ln(e + t)]−2, n > 10− 4γ,

for large enough t.
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Hardy-Sobolev parabolic equation

Some comments

� Due to the fact that we use the Rellich inequality to show that the

critical norm is a Lyapunov function, we are restricted to n ≥ 5.

� The singularity at x = 0 in the nonlinear term forces us to make

some significant modifications in the proof, when compared to the

case γ = 0.

� These are implemented through delicate estimates in Lorentz spaces.
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Final remarks

� Method used for proving decay in critical space could be applied to

some (many!) dissipative equations.

� Namely:

� find mild solution in critical, scale-invariant space;

� show norm is Lyapunov function;

� use Fourier Splitting Method and Decay Character to prove decay.
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