### WORKSHOP ON PDES AND CONTROL 2025 (PKM-60)

September 3-5, 2025, Sevilla, Spain

Khadijeh Baghaei<sup>1</sup>, Silvia Frassu<sup>2</sup>, Yuya Tanaka<sup>3</sup> and Giuseppe Viglialoro<sup>2</sup>

# On Keller-Segel models with positive total flux: analytic and modeling perspectives

1 Pasargad Institute (Iran), 2 University of Cagliari (Italy), 3 Kwansei Gakuin University (Japan)

PRIN 2022 - codice progetto: 2022ZXZTN2
Nonlinear differential problems with applications to real phenomena









#### Main aim of the presentation

$$\textbf{A)} \begin{cases} u_t = \Delta u - \chi \nabla \cdot (u \nabla v), & v_t = \Delta v - v + u \\ u_\nu = v_\nu = 0 \text{ on } \partial \Omega \times (0, T_{max}), & u(x, 0) = u_0(x), & v(x, 0) = v_0(x) \end{cases} , \quad u(x, 0) = u_0(x), \quad v(x, 0) = v_0(x) \quad x \in \bar{\Omega}.$$

$$\text{B)} \begin{cases} u_t = \Delta u - \chi \nabla \cdot (u \nabla v), & v_t = \Delta v - v + u & \text{in } \Omega \times (0, T_{max}), \\ \hline \text{Robin-type boundary confitions} &, \ u(x,0) = u_0(x), \ v(x,0) = v_0(x) & x \in \bar{\Omega}. \end{cases}$$

- The Keller-Segel system with Neumann boundary conditions
- Main results and discussions on A)
- Some natural extensions on A)
- Introduction of B). The Robin boundary conditions
- Comparison and main differences between A) and B)

Neumann Boundary Conditions
VS.
Robin Boundary Conditions



How far do standard methods work?

#### CHEMOTAXIS: movement of an organism or entity in response to a chemical stimulus



$$\begin{cases} u_t = \Delta u - X \nabla \cdot (u \nabla v) \\ v_t = \Delta v - v + u \end{cases}$$

$$(x,t) \in \Omega \times (0,T_{max})$$

u=u(x,t) cells' density, v=v(x,t) chemical signal. Chemosensitivity  $\chi>0$ 

Taxis term  $\chi>0$  has a gathering effect on u. The signal v has attractive effect on u, which produces v

Keller EF, Segel LA. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology 1970; 26:399-415

Idealization of the motion of the cells, inside a domain and initially distributed accordingly to the law of u(x,0) and v(x,0).  $\Omega$  smooth and bounded n-dimensional domain,  $T_{max}$  lifespan of the solutions. The evolution is influenced by the competition between the aggregation impact, increasing for larger size of  $\chi>0$ . The more u increases the more v increases. The Laplacian operator provides diffusion to the system

#### The Keller-Segel model: first indications

$$\begin{cases} u_t = \Delta u - \chi \nabla \cdot (u \nabla v), & v_t = \Delta v - v + u & \text{in } \Omega \times (0, T_{max}), \\ u_\nu = v_\nu = 0 & \text{on } \partial \Omega \times (0, T_{max}), & u(x, 0) = u_0(x), & v(x, 0) = v_0(x) & x \in \bar{\Omega}. \end{cases}$$

The model may admit global bounded solutions, for which  $T_{max} = \infty$ , and unbounded ones blowing up in finite time ( $T_{max}$ finite, and  $\delta$ -formations at points of the domain emerge. For n=1 all solutions are uniformly bounded in time (diffusion dominates self-attraction), whereas for  $n \geq 2$  self-attraction might overcome diffusion and blow-up may appear.

Higher dimensions "enforce" blow-up **xm** large Blow – Up and Instability

#### **Dichotomy criterion**

$$\lim_{t \to T_{max}} \|u(\cdot, t)\|_{L^{\infty}(\Omega)} = +\infty$$
$$\|u(\cdot, t)\|_{L^{\infty}(\Omega)} \le C \quad t \in (0, \infty)$$

$$||u(\cdot,t)||_{L^{\infty}(\Omega)} \le C \quad t \in (0,\infty)$$



Nagai, Winkler, Herrero, Velázquez, Tao, Lankeit, Fuest, Marras, Frassu, Columbu....Acosta-Soba, Guillén-González, Rodríguez Galván, Rodríguez Bellido .... Sorry if I forgot any of you!

#### THE PROBLEM: crucial property for the zero-flux Keller-Segel model

$$\begin{cases} u_t = \Delta u - \chi \nabla \cdot (u \nabla v), & v_t = \Delta v - v + u & \text{in } \Omega \times (0, T_{max}), \\ u_{\nu} = v_{\nu} = 0 & \text{on } \partial \Omega \times (0, T_{max}), & u(x, 0) = u_0(x), & v(x, 0) = v_0(x) & x \in \bar{\Omega}. \end{cases}$$

### Let (u,v) be a positive classical solution in $\Omega \times (0,T_{max})$

$$\int_{\Omega} u_t = \frac{d}{dt} \int_{\Omega} u = \int_{\Omega} \nabla \cdot (\nabla u - \chi u \nabla v) = 0 \quad t \in (0, T_{max})$$
 The Divergence

Theorem

$$\frac{d}{dt} \int_{\Omega} u = 0 \Rightarrow \int_{\Omega} u = \int_{\Omega} u_0(x) dx \quad \text{for all } t \in (0, T_{max})$$



 $||u(\cdot,t)||_{L^{\infty}(\Omega)} \leq C, \quad t \in (0,T_{max})$ 

THE MASS IS PRESERVED

#### On some variants of the Keller-Segel model with Neumann BC

$$u_t = \nabla \cdot (S(u, v)\nabla u - T(u, v)\nabla v) + h(u), \qquad v_t = \Delta v + g(u, v) \quad \text{in} \quad \Omega \times (0, T_{max}).$$

S(u, v)

**Diffusion** 

T(u,v)

Chemoattractant

h(u)

**Growth/Death rate for** *u* 

g(u,v)

**Growth/Death rate for** *v* 

Common denominator  $u_{\nu} = v_{\nu} = 0$  on  $\partial \Omega \times (0, T_{\text{max}}) \square \backslash \|u(\cdot, t)\|_{L^{1}(\Omega)}$  is bdd

- $\triangleright$  S(u,v) smoothing effects, T(u,v) instability/aggregation actions, h(u) an external source
- > g(u,v)=-v+u, cells produces chemoattractant; g(u,v)=-uv, cells consume chemoattractant

#### On some variants of the Keller-Segel model with different BC

$$u_t = \nabla \cdot (S(u, v)\nabla u - T(u, v)\nabla v) + f(u), \qquad v_t = \Delta v + g(u, v) \quad \text{in} \quad \Omega \times (0, T_{max}).$$

|                                | S(u,v)                                 | T(u, v) | f(u)       | g(u, v) | Boundary condition for $v$                                                                                                  |
|--------------------------------|----------------------------------------|---------|------------|---------|-----------------------------------------------------------------------------------------------------------------------------|
| ppq                            | 1                                      | u       | Dirichlet  | u       | $v_{ \partial\Omega\times(0,T_{\max})}=0$                                                                                   |
| is                             | 1                                      | u       | Diricillet | -v+u    | $v_{ \partial\Omega\times(0,T_{\max})} = 0$<br>$v_{ \partial\Omega\times(0,T_{\max})} = v^*$                                |
|                                | 1                                      | u       | 0          | -vu     | $v_{ \partial\Omega\times(0,T_{\max})} = v^*$                                                                               |
| $1(\Omega$                     | $\parallel 1$                          | u       | $u-u^2$    | -vu     | $v_{\nu \partial\Omega\times(0,T_{\text{max}})} = 1 - v$                                                                    |
| =                              | $\begin{bmatrix} 1 \\ m \end{bmatrix}$ | u       | $u-u^2$    | -vu     | $v_{ \partial\Omega} = v^*$                                                                                                 |
| $\ u(\cdot,t)\ _{L^1(\Omega)}$ | $u^m$                                  | u       | Robin      | -vu     | $v_{\nu \partial\Omega\times(0,T_{\text{max}})} = 1 - v$                                                                    |
| $n(\cdot)$                     | $u^m$                                  | -u/v    | KODIII     | -vu     | $ \begin{array}{c} v_{ \partial\Omega\times(0,T_{\max})} = v^* \\ v_{ \partial\Omega\times(0,T_{\max})} = v^* \end{array} $ |
|                                | $u^m$                                  | -u      |            | -vu     | $  v  _{\partial\Omega\times(0,T_{\max})}=v^*$                                                                              |

**Common denominator** 
$$S(u,v)u_{\nu} - T(u,v)v_{\nu} = 0$$
 on  $\partial\Omega \times (0,T_{\max})$ 

$$\frac{d}{dt}\int_{\Omega}u=\int_{\partial\Omega}\left(S(u,v)u_{\nu}-T(u,v)v_{\nu}\right)+\int_{\Omega}f(u)=\int_{\Omega}f(u)\ \ \text{on}\ \ (0,T_{\max})$$
 lay between derivative of  $u$  and  $v$  
$$S(u,v)u_{\nu}-T(u,v)v_{\nu}$$

Interplay between derivative of u and v

$$S(u,v)u_{\nu} - T(u,v)v_{\nu}$$



#### Blow-up despite logistics. Preventing gathering with gradient terms



Biologically, gradient terms appear as additional decay terms depending on the size of the gradient of the population density. (Souplet *Math. Methods Appl. Sci.,* 1996.)

#### Blow-up despite strong logistics (n=3)?



#### Outward flows for *u* and *v* and positive total flux

$$v_{\nu} = -hv$$
 on  $\partial\Omega \times (0, T_{\text{max}})$ 

$$u_{\nu} = (\alpha - 1)\chi huv \quad \alpha \in (0, 1]$$

**Robin boundary condition** 

outward flows for u and v

**Total flux** 

$$u_{\nu} - \chi u v_{\nu} = \alpha \chi h u v$$
 on  $\partial \Omega \times (0, T_{\text{max}})$ 

Zero-Flux ( $\alpha$ =0)!!

The outward flux of the chemoattractant v transports the cells across the boundary toward the interior of the domain itself; the result is a positive (inward) total flux

Even for appropriate outward flux of the cells' configuration, the taxis-driven effect of the outward flow of the chemoattractant can yet keep producing a positive total flux

#### Positive total flux and behaviour of the mass

$$u_t = \nabla u - \chi \nabla \cdot (u \nabla v)$$
$$u_{\nu} - \chi u v_{\nu} = \alpha \chi h u v$$



$$\frac{d}{dt} \int_{\Omega} u = \alpha \chi h \int_{\partial \Omega} uv \ge 0 \quad \text{for all } t \in (0, T_{\text{max}})$$







RELATED ANALYSIS: Blowup, boundendess?







$$\lim_{t \to T_{max}} \|u(\cdot, t)\|_{L^{\infty}(\Omega)} = +\infty$$







$$T_{max} \leq \infty$$

#### Numerical simulations and questions in 2D for the case $\alpha=1$



$$\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$

$$u_0(x,y,0) = v_0(x,y,0) = 13e^{-x^2 - y^2}, \chi = 0.14, h = 60$$

$$u_{\nu} - \chi u v_{\nu} = \chi h u v$$

Data: 2960 triangles,  $\Delta t = 10^{-6}$ 



#### Numerical simulations: nil flux VS. positive flux

 $u_{\nu} - \chi u v_{\nu} = \alpha \chi h u v$ 

Blue/Red line <-> positive/Zero flux:  $u^P / u^Z$ 

 $\alpha = 1 / \alpha = 0.7 <-> continuous / dotted line$ 



CONJECTURE:  $\max(u^P) \ge \max(u^Z)$  for all  $t \in (0, T_{\max})$  (fixed the same other data; domain and initial distributions)

Positve flux: How to control the mass? 
$$\frac{d}{dt} \int_{\Omega} u = \alpha \chi h \int_{\partial \Omega} uv \ge 0$$
 for all  $t \in (0, T_{\text{max}})$ 

#### **Trace Embeddings**

$$\int_{\partial\Omega} \psi \le C_{\partial\Omega} \int_{\Omega} \psi + D_{\partial\Omega} \int_{\Omega} |\nabla \psi| \quad C_{\partial\Omega}(n,\Omega) \text{ and } D_{\partial\Omega}(n,\Omega)$$

$$\frac{d}{dt} \int_{\Omega} u \le c_1 \int_{\Omega} u^2 + c_2 \int_{\Omega} |\nabla u|^2 + c_3 \int_{\Omega} v^2 + c_4 \int_{\Omega} |\nabla v|^2$$

Young's Inequality **Trace Embedding** 



Manipulating the equation  $au v_t = \Delta v - v + u$ 

$$\tau v_t = \Delta v - v + u$$



$$\frac{d}{dt} \int_{\Omega} u \le c_1 \int_{\Omega} u^2 + c_2 \int_{\Omega} |\nabla u|^2 \quad \text{for all } t \in (0, T_{max})$$

□ NOTE THE HIGH POWER, 2 STRONG LOGISTIC TO HAVE BOUNDEDNESS **OF THE MASS** 

$$\frac{d}{dt} \int_{\Omega} u \le c_1 \int_{\Omega} u^2 + c_2 \int_{\Omega} |\nabla u|^2 \left( + \int_{\Omega} h(u, |\nabla u|) \right) \xrightarrow{} h(u, |\nabla u|)$$

$$\rightarrow h(u, |\nabla u|) = au - bu^2 - c|\nabla u|^2$$

We need "negative" terms to control the sum on the r.h.s.

#### **Boundedness result**

K. Baghaei, S. Frassu, Y. Tanaka, G. Viglialoro, To what extent does the consideration of positive total flux influence the dynamics of Keller—Segeltype models? *Submitted*.

$$(\mathcal{P}_{\tau}) \begin{cases} u_{t} = \Delta u - \chi \nabla(u \nabla v) + au - bu^{2} - c|\nabla u|^{2} & \text{in } \Omega \times (0, T_{\text{max}}), \\ \tau v_{t} = \Delta v - v + u & \text{in } \Omega \times (0, T_{\text{max}}), \\ u_{\nu} = (\alpha - 1) \chi huv, \ v_{\nu} = -hv & \text{on } \partial \Omega \times (0, T_{\text{max}}), \\ u(x, 0) = u_{0}(x), \tau v(x, 0) = \tau v_{0}(x) & x \in \bar{\Omega}. \end{cases}$$

**Theorem** Let  $\Omega \subset \mathbb{R}^n$  bounded of class  $C^{2+\delta}$ ,  $\delta \in (0,1)$ ,  $\tau \in \{0,1\}$ ,  $\chi, a, c, h > 0$  and  $\alpha \in [0,1]$ . Then there exist  $C_{\partial\Omega} = C_{\partial\Omega}(\Omega, n)$  and  $D_{\partial\Omega} = D_{\partial\Omega}(\Omega, n)$  such that for every

 $u_0, v_0: \bar{\Omega} \to \mathbb{R}^+, \text{ with } u_0, v_0 \in C^{2+\delta}(\bar{\Omega}) \text{ complying with } u_{0\nu} = (\alpha - 1)\chi h u_0 v_0 \text{ and } v_{0\nu} = -hv_0 \text{ on } \partial\Omega$ 

whenever

$$b > \frac{(\chi \alpha D_{\partial \Omega})^2 h}{16cC_{\partial \Omega}} + \frac{\chi \alpha}{2} \sqrt{hC_{\partial \Omega}} \qquad problem \ (\mathcal{P}_{\tau}) \ admits \ a \ unique \ solution$$

 $(u,v) \in C^{2+\delta,1+\frac{\delta}{2}}(\bar{\Omega} \times [0,\infty)) \times C^{2+\delta,\tau+\frac{\delta}{2}}(\bar{\Omega} \times [0,\infty)) \times C^{2+\delta,\tau+\frac{\delta}{2}}(\bar{\Omega} \times [0,\infty)) \ \ such \ that \ 0 \leq u,v \in L^{\infty}(\Omega \times (0,\infty)).$ 

✓ For  $\alpha$ =0 it is sufficient b>0✓ b increases with  $\alpha$ , h and  $\chi$  (responsible of gathering effects)

## THANK YOU FOR YOUR ATTENTION

# TANTI AUGURI KISKO E MANOLO!