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Rueda-Gómez, D. A. Numerical analysis for a diffusive SIS epidemic model with repulsive infected-taxis . . 36

Trabut, M. Observability inequality for the Grushin equation on a multi-dimensional domain . . . . . . . 37

Vanlaere, R. On the null-controllability of subelliptic systems of Grushin type . . . . . . . . . . . . . . . . 38

Viglialoro, G. On Keller–Segel models with positive total flux: analytic and modeling perspectives . . . . . 39

Villamizar-Roa, E.J. An optimal control problem related to a 3D chemo-repulsion model with nonlinear
production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Posters 41

Aguilar-Reyes, A. Existence of non-autonomous exponential attractors for a reaction-diffusion model with
terms inH−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Casado Sánchez, A. Eigenvalues and Maximum Principle Results for Nonlocal Diffusion Problems . . . . 43

Cruz, F.W. Temporal Decay for Non-Newtonian Micropolar Fluids . . . . . . . . . . . . . . . . . . . . . 44

Destro de Toledo, L. E. Abstract Cauchy problems via generalized ODEs . . . . . . . . . . . . . . . . . 45

Nunez, C. Reduced Order Model for Time Splitting Schemes . . . . . . . . . . . . . . . . . . . . . . . . 46

Ortega-Román, N. Mathematical modeling of Neuroblast Migration
towards the Olfactory Bulb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Roldan, I. The stochastic TR-BDF2 and ICC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Serhal, S. Optimal Control for Degenerate Chemotaxis Models . . . . . . . . . . . . . . . . . . . . . . . 49

3



Introduction



Workshop on PDEs and Control - PKM60

Organizing committee

Diego Araujo de Souza (US - Spain)
Anna Doubova (US - Spain)
Juan Vicente Gutiérrez Santacreu (US - Spain)
Marı́a Victoria Redondo Neble (UCA - Spain)
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Welcome

On behalf of the Organizing Committee, it is a pleasure to welcome all the participants in the Workshop on PDEs and
Control, to be held on September from 3 to 5, 2025 at the Institute of Mathematics of the University of Seville.

The development of Partial Differential Equations (PDEs) represents one of the cornerstones of research at the Depart-
ment of Differential Equations and Numerical Analysis (EDAN) of the University of Seville. Over the years, the de-
partment has fostered numerous collaborations, trained many doctoral students, and established a strong network of
international contacts, all aimed at advancing research in this fundamental area of mathematics. Thanks to the dedi-
cation of its members, EDAN has become a reference point in both research and education in mathematics, while also
increasing its level of international engagement. These efforts have led to fruitful collaborations with esteemed researchers
from countries such as Brazil, Chile, Colombia, France, Mexico, the USA, Tunisia, and Senegal, promoting a dynamic
exchange of ideas and knowledge. With this in mind, EDAN is organizing this international workshop to highlight the
latest advances in the field of PDEs and Control, bringing together long-standing collaborators as well as other leading
researchers active in these areas. As a special part of the workshop, we will hold a tribute session in honor of Professors
Francisco Guillén González and Manuel González Burgos, on the occasion of their 60th birthdays.

The members of the organizing committee wish to express their gratitude to the institutions that have supported and
made possible the realization of this event.

It is our hope that this meeting contributes to create a rich and fruitful frame of work and collaboration.

The Organizing Committee
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Program

Schedule Wednesday 3 Thursday 4 Friday 5
08:30-09:00 Registration

09:00-09:45 Opening ceremony 
Plenary 4: 

Didier Bresch
Plenary 8:

Assia Benabdallah

09:45-10:30
Plenary 1: 

Enrique Fernández-Cara
Plenary 5:

Ramon Codina
Plenary 9:

Farid Ammar Kodja

10:30-11:15 Coffee break Coffee break/Posters Coffee break

11:15-12:00
Plenary 2:

Sylvain Ervedoza
Plenary 6: 

Luz de Teresa
Plenary 10: 

Vivette Giraut

12:00-12:45
Plenary 3: 

 Gabriela Planas
Plenary 7:

Morgan Morancey
Plenary 11: 

Marko Rojas-Medar

12:45-13:30 About PKM60 Official Photo Posters
13:30-15:00 Lunch Lunch Lunch

15:00-15:30 Giuseppe Viglialoro Anibal Coronel Roberto Carlos Cabrales

15:30-16:00 Roman Vanlaere Exequiel Mallea-Zepeda Mayte Pérez

16:00-16:30 Mathilda Trabut Jone Apraiz Guillaume Olive

16:30-17:00 Roberto Morales Elder Villamizar Jérôme Le Rousseau
17:00-17:30 Coffee break Coffee break Closing ceremony

17:30-18:00 Imaculada Gayte Diego Rueda

18:00-18:30 David Mellado Pablo Braz e Silva 

18:30-19:00 Daniel Acosta

19:00-19:30 Everaldo Bonotto

20:30 Welcome Cocktail

21:00
Social Dinner

at Rio Grande Restaurant

Workshop on PDEs and Control 2025 (PKM-60)
Seville, September, 3-5, 2025
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Workshop on PDEs and Control 2025 (PKM-60)

September 3-5, 2025, Sevilla, Spain

Minimality and control for parabolic systems

F. Ammar Khodja∗, A. Benabdallah∗∗

The aim of this talk is to link the controllability of parabolic problems to the minimality of sequences in a Hilbert space. We will start
from the contributions of Manuel González-Burgos (and his collaborators on the boundary control of parabolic systems) to arrive at
the recent results that we have obtained with Manuel González-Burgos, Morgan Morancey and Luz de Teresa. The presentation will
be in two parts (one by F. Ammar Khodja and the other by A. Benabdallah). Here is the outline :

1. Boundary control of parabolic systems and the moments method : Manolo’s contributions;

2. Minimal sequences in Hilbert spaces;

3. Application 1 : Carleman inequalities and minimal sequences;

4. Application 2 : Spectral inequality and minimal sequences;

5. Some extensions and open problems for the union of minimal sequences: applications to simultaneous controllability.
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Workshop on PDEs and Control 2025 (PKM-60)

September 3-5, 2025, Sevilla, Spain

Once upon a time Kisco &Manolo

D. Bresch 1

Once upon a time, there were two young mathematicians that I
had the great fortune to meet for the first time when I came for 3
months during my thesis (supervised by Jacques (Simon)) at the
invitation of Enrique and Rosa. The first thing that struck me was
their complementarity and their great complicity. An efficient
and caring tandem, both in the field of mathematical research and
in more earthly life. Being there to celebrate their birthdays is a
joy for me. Everything will be under control (exact or not) and
everything will flow in complete dependence on the rheology of
the liquid that we will encounter from September 3rd to 5th. To
please my friends, I will center my presentation around fluid me-
chanics (one of the topic on which Kisco is a specialist) by trying
the complicated exercise to present several results that I have ob-
tained with collaborators. I have the dream to talk about ”leeks”
and more seriously to show that it can be good to gain weight,
to show that undergoing constraints sometimes brings beautiful
mathematical stories, to show that duality approach could be im-
portant to link some phenomena from micro to mesoscales. In
this abstract, I would like also to associate Cori (Kisco’s wife) and
Catherine (my wife) to wish an happy birthday to Kisco and of
course to Manolo too. I thank the organizers who came up with
the idea for this wonderful conference. Special thanks to Maria
Angeles and Anna, long-term collaborators and friends of Kisco
and Manolo. I won’t list the people who matter to me in Seville
because it would be too long. This moment is to celebrate Kisco
and Manolo’s anniversary. I hope they will enjoy listening to my
talk, as well as the other participants. For me, I’m already happy
to know that we’re going to have a good time.

Acknowledgements

D. Bresch was partially supported by the BOURGEONS project,
grant ANR-23-CE40-0014-01 of the French National Research
Agency (ANR). This work also benefited of the support of the
ANR under France 2030 bearing the reference ANR-23-EXMA-
004 (Complexflows project). ;
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Workshop on PDEs and Control 2025 (PKM-60)

September 3-5, 2025, Sevilla, Spain

Nitsche’s prescription of Dirichlet conditions for the

conforming finite element approximation of Maxwell’s

problem

D. Boffi1, R. Codina2 and Ö. Türk3

This work deals with the FE approximation of the following sim-
plified problem arising in magnetostatics, often called Maxwell’s
problem: find a magnetic induction field u : Ω −→ Rd and a
scalar field p : Ω −→ R solution of the boundary value problem

ν∇×∇× u+∇p = f in Ω,

−∇ · u = 0 in Ω,

n× u = n× ū on Γ,

p = p̄ := 0 on Γ,

where Ω is a domain of Rd (d = 2, 3), Γ = ∂Ω, ν > 0 is a
physical parameter, ū is given and f is assumed to be solenoidal.

For ū = 0, the problem is equivalent to the two variational equa-
tions:

a(u,v) + b(p,v) = ⟨f ,v⟩Ω ∀v ∈ V0,

b(q,u) = 0 ∀q ∈ Q0,

a(u,v) := ν(∇× u,∇× v)Ω, b(p,v) := (∇p,v)Ω,
V0 = H0(curl,Ω), Q0 = H1

0 (Ω).

Its conforming finite element approximation consists of build-
ing finite element spaces Vh,0 ⊂ V0 and Qh,0 ⊂ Q0 and find
uh ∈ Vh,0, ph ∈ Qh,0 such that

a(uh,vh) + b(ph,vh) = ⟨f ,vh⟩Ω ∀vh ∈ Vh,0,

b(qh,uh) = 0 ∀qh ∈ Qh,0.

When ū ̸= 0, the boundary condition for u can be prescribed
weakly using Nitsche’s method, which can also be used to pre-
scribe the boundary condition for ph. If Vh andQh are the finite
element spaces without boundary conditions, the problem con-
sists of finding [uh, ph] ∈ Vh ×Qh such that

BN([uh, ph], [vh, qh]) = LN([vh, qh]) ∀[vh, qh] ∈ Vh ×Qh,

where

BN([uh, ph], [vh, qh]) := ν(∇× vh,∇× uh)Ω

+ (vh,∇ph)Ω + (uh,∇qh)Ω
− ν⟨n× vh,∇× uh⟩Γ − ⟨n · uh, qh⟩Γ
− ν⟨n× uh,∇× vh⟩Γ − ⟨n · vh, ph⟩Γ

+Nu
ν

h
⟨n× vh,n× uh⟩Γ −Np

L2
0

νh
(ph, qh)Γ

LN([vh, qh]) := ⟨vh,f⟩Ω − ν⟨n× ū,∇× vh⟩Γ
+Nu

ν

h
⟨n× vh,n× ū⟩Γ.

We prove that if Vh,0 andQh,0 satisfy the classical inf-sup condi-
tion for Maxwell’s problem, then Nitsche’s method yields a stable
solution that is optimally convergent in the norm:

∥[vh, qh]∥2V×Q,N := ν∥∇ × u∥2L2(Ω) +
ν

L2
0

∥u∥2L2(Ω)

+
L2
0

ν
∥∇p∥2L2(Ω) +

ν

h
∥n× vh∥2L2(Γ) +

L2
0

νh
∥qh∥2L2(Γ).

whereL0 is a characteristic length of Ω.

We also prove a similar result for a stabilised finite element method
presented in [1], in which spaces Vh,0 and Qh,0 do not need to
satisfy any inf-sup condition. The present work is based on [2].

Bibliography
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2Universitat Politècnica de Catalunya (SPAIN), Email: ramon.codina@upc.edu
3Middle East Technical University (TURKEY), Email: onder.turk@yandex.com

14



Workshop on PDEs and Control 2025 (PKM-60)

September 3-5, 2025, Sevilla, Spain

Boundary null controllability of a class of 2-d degenerate
parabolic PDEs

Luz de Teresa1, Vı́ctor Hernández-Santamarı́a ∗ and Subrata Majumdar ∗

In this talk we deal with the boundary null controllability of some
degenerate parabolic equations posed on a square domain, pre-
senting, as far as we know, the first study of boundary controlla-
bility for such equations in multidimensional settings. The proof
combines two classical techniques: the method of moments and
a Lebeau-Robbiano strategy. A key novelty of this work lies in the
analysis of boundary control localized on a subset of the bound-
ary where degeneracy occurs. Let us consider the following degen-
erate parabolic equation in a square domainΩ = (0, 1)× (0, 1).
We study the degenerate parabolic equation:

(1)


∂tu = div (D∇u) in (0, T )× Ω,

u(t) = 1γq(t), in (0, T )× ∂Ω,

u(0) = u0, in Ω.

where γ = {0} × ω with ω an open subset of (0, 1) (in the y
variable). The matrix functionD : Ω 7→M2×2(R) is given by

D(x, y) =

(
xα1 0
0 yα2

)
,

where α = (α1, α2) ∈ [0, 1)× [0, 1), and u0 is the initial data
that lies in a functional spaceH−1

α (Ω)We will also give results for

α1, α2 ∈ (1, 2) and combination of different grades of degener-
acy (weak/strong, strong-strong, etc.) [2] We use the ideas in [1]
to obtain the boundary control.

Acknowledgements
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On the stabilisation of the incompressible Navier Stokes

equations in a 2-d channel with a normal control on the

boundary, old and new

Shirshendu Chowdhury1 and Sylvain Ervedoza2

In this talk, I will discuss the stabilization of incompressible
Navier-Stokes equations in a 2d channel around a fluid at rest
when the control acts only on the normal component of the
proper subset of the upper boundary. In this case, the linearized
equations are not controllable nor stabilizable at an exponential
rate higher than π2/L2, when the channel is of width L and of
length 2π and the viscosity parameter is set to 1. Our main re-
sult allows to go above this threshold and reach any exponential
decay rate by using the non-linear term to control the directions
which are not controllable for the linearized equations. Our ap-
proach therefore relies on writing the controlled trajectory as an
expansion of order two taking the form εa+ε2β for ε > 0 small
enough. In particular, we can prove that, for the linearized sys-
tem, only the 0-mode cannot be controlled and that the other
modes are null-controllable when the control acts on the whole

upper boundary, and (at least) approximately controllable when
the control acts on a localized part of the upper boundary. We
thus can develop a non-linear strategy to control a finite number
of components of the zero modes through the convective terms
of the other modes. This strategy was developed in a prior work
with Shirshendu Chowdhury when the non-zero modes are null-
controllable. I will explain that it can also be adapted when the
non-zero modes are only (known to be) approximately control-
lable, making the strategy more robust.

Acknowledgements
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Manolo, Kisko and other young people

E. Fernández-Cara1

In this talk, I will first recall some “old” works in collaboration
with M. González-Burgos concerning control results for nonlin-
ear PDEs and with F. Guillén, dealing with the mathematical
analysis of viscous (but not necessarily Newtonian) fluids.

Then, I will speak of other more recent related results that hope-
fully will lead to new achievements in the next future. Among
others, I will refer to the multi-objective and hierarchic control of
several PDEs and also to several geometric inverse problems for
parabolic systems.
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On a model of flows in a deformable porous solid

with small strain and density depending material

modulus

A. Bonito1, D. Guignard2, V. Girault3 and K.R. Rajagopal4

Consider the following model of incompressible slow flows in a
deformable solid in Rd, with an implicit constitutive relation for
the Cauchy stress tensor Ts of the solid:

(1) ϵs = E1s(1+λ2tr(ϵs))Ts+E2s(1+λ3tr(ϵs))tr(Ts)I,

the balance of linear momentum for the solid taking into account
the interaction with the fluid through the parameter α:

(2) div(Ts) + α(vf − ∂tus) = 0,

and the flow equation for the fluid taking into account the inter-
action with the solid:

α(vf − ∂tus)− µf∆vf +∇ pf = −ϱf∂tvf ,

divvf = 0.
(3)

Here tr(Ts) is the trace of the tensor Ts, ϵs is the symmetric
gradient tensor of the solid’s displacement us, µf and ϱf are the
fluid’s viscosity and density andE1s > 0 andE2s < 0 are elastic-
ity parameters. The system (1)-(2)-(3) is supplemented with initial
and boundary conditions.

The model for the solid is an example taken from [1] for small
strain, namely

(4) ∥ϵs∥ ≤ δ ≪ 1

where ∥ · ∥ is the Frobenius norm. In addition a linearized de-
pendence on the density yields the factors (1 + λ2tr(ϵs)) and
(1 + λ3tr(ϵs)), where λ2 and λ3 are also assumed to be small.
The resulting relation (1) for ϵs remains nonlinear without com-
pactness nor monotonicity property.

We can take advantage of (4) and suitably truncate tr(ϵs), i.e.,
replace tr(ϵs) by Tδ̃tr(ϵs), where Tk is the standard truncation
operator at height k and δ̃ =

√
dδ. This allows to obtain the

following expression for Ts:

Ts =
1

E1s(1 + λ2Tδ̃divus)

(
ϵs−E2s(1+λ3Tδ̃divus)

divus

F (us)
I
)

where

F (us) = E1s(1 + λ2Tδ̃divus) + dE2s(1 + λ3Tδ̃divus).

This new formulation does not change the problem as long as
(4) holds. In particular, it does not remedy the lack of compact-
ness and monotonicity but permits to derive some a priori esti-
mates. However, owing thatλ2 andλ3 are small, the new formu-
lation can now be viewed as a small perturbation of the fully linear
model (i.e., with λ2 = λ3 = 0) which is itself well-posed. Exis-
tence of an exact solution can be obtained by an implicit function
argument inspired by [2, 3]. In contrast, the derived a priori esti-
mates allow to directly carry the error analysis of some standard
finite element methods without invoking the implicit function
theorem.
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Control of parabolic problems and block moment method

M. Morancey1

The null controllability of a parabolic problem is equivalent to
the resolution of a moment problem. I will start this talk giving
this moment problem and briefly recalling its classical resolution
using biorthogonal families.

This strategy has proved to be very efficient in some situations
where other tools cannot be applied (boundary control of cou-
pled parabolic systems, appearance of a minimal control time).
Yet, the use of biorthogonal families does not give optimal results
when there is condensation of the eigenvectors of the evolution
operator’s adjoint.

To overcome this difficulty we introduced with Assia Benabdal-
lah and Franck Boyer the block resolution of moment problems.
The goal of this talk is to give an overview of this block moment
method and its applications to the study of null controllability for
certain parabolic problems in recent years.

I will

• present the method focusing on the case of scalar control
problems,

• relate it to known results (Komornik-Loreti, Avdonin-
Ivanov) on the hyperbolic setting concerning Riesz bases

of divided differences of time exponentials,

• and, if time allows, explain why it is an important tool
in the construction of biorthogonal families in higher-
dimensional tensorized settings.

This talk is related to different works in collaboration with F. Am-
mar Khodja, A. Benabdallah, F. Boyer, M. González-Burgos,
M. Mehrenberger and L. de Teresa.
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Decay rates to solutions of some dissipative systems in

Sobolev critical spaces

Gabriela Planas1

Understanding how quickly solutions decay as time approaches
infinity is essential for capturing how systems stabilise, how
rapidly perturbations vanish, and whether the solutions effi-
ciently reach equilibrium. This understanding provides a link be-
tween transient dynamics and the system’s long-term behaviour.

In this talk, I will explore the decay rates of solutions in critical
Sobolev spaces for a range of dissipative systems. I will present re-
cent results concerning the Navier-Stokes equations, the Navier-
Stokes–Coriolis system, the energy-critical nonlinear heat equa-
tion, and the Hardy–Sobolev parabolic equation.

The decay estimates are expressed in terms of the decay charac-
ter of the initial data, yielding algebraic decay rates and showing
in detail the roles played by the linear and nonlinear parts. The
proof is carried on purely in the critical space. This is the first in-
stance in which such a method is used for obtaining decay bounds
in a critical space for nonlinear equations.

In collaboration with M. Ikeda (Japan), L. Kosloff (Brazil), and
C.J. Niche (Brazil).
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Some Questions About Second-Grade Fluid Equations

Marko A. Rojas-Medar1

In this talk, we will present some results obtained in [1], [3], [4],
[5], [6], on the flow of an incompressible non-Newtonian fluid of
grade two in Ω× (0,∞) ⊆ R3 × (0,∞):
(1)
∂t(u− α∆u)− µ∆u+ rot(u− α∆u)× u+∇p = 0,

divu = 0,

u(0) = u0.

Here, u and p denote the fluid velocity and pressure, respec-
tively. Furthermore,µ > 0 represents the kinematic viscosity and
α > 0 is a parameter characterizing the fluid’s non-Newtonian
behavior.
Next, let us consider the natural norm∥∥u(t)∥∥2

H1
α(R3)3

:=
∥∥u(t)∥∥2

L2(R3)3
+ α

∥∥∇u(t)
∥∥2
L2(R3)3

and the following function space:

V2(R3)3 := {u : u ∈ H1(R3)3, curl(u−α∆u) ∈ L2(R3)3}.
We also define, foru0 ∈ L2(Rn)n and r ∈

(
−n

2 ,∞
)

, the upper
decay indicator of u0 by

Pr(u0)+ := lim sup
ρ→0+

ρ−2r−n

∫
Bρ

|û0(ξ)|2 dξ,

where Bρ := {ξ ∈ Rn : |ξ| ≤ ρ}. Moreover, we define the
upper decay character of u0 ∈ L2(Rn)n by

r∗+(u0) := sup{r ∈ R : Pr(u0)+ <∞}.
In relation to the article [4], our main results are as follows:
Theorem 1 Let u0 ∈ V2(R3)3 and suppose that r∗+(u0) =

r∗+ ∈
(
− 3

2 ,∞
)

. Additionally, assume that ∥u0∥V2(R3)3 < ϵ for
a sufficiently small ϵ > 0. Then, for any weak solution u to (1), the
following estimate holds:∥∥u(t)∥∥2

H1
α(R3)3

≤ C (t+ 1)−min{ 3
2+r∗+, 52}, ∀ t ≥ 0,

where the constant C > 0 depends only on ∥u0∥V2(R3)3 , α, r
∗
+,

and µ.

We also compare the evolution of solutionsu(t) to (1) with the so-
lutionsu(t)of the linear system associated, which is the following
pseudo-parabolic equation in R3 × (0,∞):

(2)


∂t(u− α∆u)− µ∆u = 0,

divu = 0,

u(0) = u0.

Theorem 2 Let u0 ∈ H4(R3)3 with divu0 = 0, and suppose
that u0 is small in V2(R3)3, as in Theorem 1. Let u be a weak so-
lution to (1), and let u be the solution to the linear part (2) with the
same initial data u0 ∈ H4(R3)3. Then, for r∗+(u0) = r∗+, with
− 3

2 < r∗+ <∞, we have

∥∥u(t)−u(t)
∥∥2
H1

α(R3)3
≤ C (t+1)−min{ 5

2+
3
2 r

∗
+, 52}, ∀ t ≥ 0,

i.e., the solution u of (1) is asymptotically equivalent to the solution
u of the pseudo-parabolic equation (2) with the same data.
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Structure-preserving approximation of diffuse interface

tumor growth models

D. Acosta-Soba1, F. Guillén-González2 and J. R. Rodrı́guez-Galván1

This work is devoted to the numerical approximation of the a de-
generate diffuse interface model for tumor growth. This model
couples the Cahn-Hilliard equation for the tumor volume frac-
tionu, a reaction-diffusion equation for the nutrient volume frac-
tion n and the Darcy equation for the extracellular fluid velocity
v. Let Ω ⊂ Rd be a smooth bounded domain and T > 0 . The
model, introduced in [1], reads as follows: find (v, p, u, µu, n)
with u, n ∈ [0, 1] such that

v =− νK(∇p+ u∇µu + n∇µn),(1a)
∇ · v =0,(1b)

∂tu+∇ · (uv) =Cu∇ · (M(u)∇µu)(1c)
+ δP0P (u, n)(µn − µu)⊕,

µu =F ′(u)− ε2∆u− χ0n,(1d)
∂tn+∇ · (nv) =Cn∇ · (M(n)∇µn)(1e)

− δP0P (u, n)(µn − µu)⊕,

in Ω × (0, T ), satisfying u(0) = u0, n(0) = n0 in Ω, with
u0, n0 ∈ L2(Ω) and u0, n0 ∈ [0, 1], and the following bound-
ary conditions on ∂Ω× (0, T ),

v · n = ∇u · n = (Mn∇µn) · n = (Mu∇µu) · n = 0,
(1f )

where the parameters above are nonnegative with
δ, Cu, Cn,K > 0, ε, χ0, P0 ≥ 0 and ν ∈ {0, 1}.

Moreover, F : R → R is the Ginzburg-Landau double-well po-
tential F (u) = 1

4u
2(1 − u)2, M(·) is a degenerate mobility

function, µu and µn are the chemical potentials for the tumor
and nutrient variables, respectively, with µn := 1

δn − χ0u and
P (·, ·) is a degenerate proliferation function. The operator (·)⊕
denotes the positive part such that (ϕ)⊕ = max{ϕ, 0}.

In this talk, we introduce a structure-preserving discretization of
the model (1) based on a upwind discontinuous Galerkin approxi-
mation in space and a semi-implicit scheme in time. The resulting
discrete variables preserve the following properties of any solution
(v, p, u, µu, n) of the continuous model (1):

Proposition 3 The total mass of tumor cells and nutrients is
conserved in the sense of ∂t

∫
Ω
(u(x, t) + n(x, t))dx = 0.

Proposition 4 The following energy law is satisfied

∂tE(u, n) + Cu

∫
Ω

M(u)|∇µu|2 + Cn

∫
Ω

M(n)|∇µn|2

+ δP0

∫
Ω

P (u, n)(µu − µn)
2
⊕ +

1

K

∫
Ω

|v|2 = 0,

where the energy functional is defined by

E(u, n) :=

∫
Ω

(
ε2

2
|∇u|2 + F (u)− χ0un+

1

2δ
n2

)
.

Moreover, we will also present some numerical results that illus-
trate the performance of the proposed scheme.

The details of the numerical approximation and the proofs of the
results in the absence of the extracellular fluid interaction (ν = 0)
have been published in [2]. Currently, we are working on extend-
ing the ideas for the case ν = 1 using the stabilization techniques
developed in [3], direction in which we have made some promis-
ing progress that will be reported.
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Attractors for a class of impulsive systems

Everaldo de Mello Bonotto1

The theory of impulsive systems describes the evolution of pro-
cesses where the continuous dynamics are interrupted by abrupt
changes of state.

Definition 5 A semiflow on X (denoted by (X,π)) is a fam-
ily of maps {π(t) : t ∈ R+} acting from X to X such that
π(0) = I , π(t + s) = π(t)π(s) for all t, s ∈ R+, and
R+ ×X ∋ (t, x) 7→ π(t)x ∈ X is continuous.

Definition 6 Given a semiflow (X,π), a nonempty closed
subsetM ⊂ X is called an impulsive set if for each x ∈M there
exists ϵx > 0 such that

⋃
t∈(0,ϵx)

{π(t)x} ∩M = ∅.

Definition 7 An impulsive dynamical system (X,π,M, I)
consists of a semiflow (X,π), an impulsive set M ⊂ X and a
continuous function I : M → X called impulsive function.

The impact function associated to (X,π,M, I) is given by

ϕ(x) =

{
s, if π(s)x ∈M and π(t)x /∈M, 0 < t < s,
∞, if π(t)x /∈M for all t > 0.

The impulsive positive trajectory of x ∈ X in (X,π,M, I) is a
map π̃(·)x : Jx → X defined on some interval Jx ⊆ R+ con-
taining 0, given inductively by the following way: if ϕ(x) = ∞
then π̃(t)x = π(t)x for all t ∈ R+. But, if ϕ(x) < ∞ then we
set x = x+0 and we define π̃(·)x on [0, ϕ(x+0 )] by

π̃(t)x =

{
π(t)x+0 , if 0 ⩽ t < ϕ(x+0 ),

I(π(ϕ(x+0 ))x
+
0 ), if t = ϕ(x+0 ).

Now, set s0 = ϕ(x+0 ), x1 = π(s0)x
+
0 and x+1 = I(π(s0)x

+
0 ).

Since s0 < ∞, the previous process can go on, but now starting
at x+1 . If ϕ(x+1 ) = ∞ then we define π̃(t)x = π(t− s0)x

+
1 for

all t ≥ s0. But, if s1 = ϕ(x+1 ) < ∞ i.e., x2 = π(s1)x
+
1 ∈ M

then we define π̃(·)x on [s0, s0 + s1] by

π̃(t)x =

{
π(t− s0)x

+
1 , if s0 ⩽ t < s0 + s1,

I(x2), if t = s0 + s1.

Here, we denote x+2 = I(x2). This process ends after a finite
number of steps if ϕ(x+n ) = ∞ for some n ∈ N, or it may pro-
ceed indefinitely, if ϕ(x+n ) < ∞ for all n ∈ N and, in this case,

π̃(·)x is defined in [0, T (x)), where T (x) =
∞∑
i=0

si. We shall

assume that T (x) = ∞ for all x ∈ X .

Definition 8 A nonempty set Ã ⊂ X is called a global attrac-
tor for (X,π,M, I) if Ã is pre-compact and Ã = Ã\M , Ã is π̃-
invariant (π̃(t)A = A for all t ∈ R+), anddH(π̃(t)B, Ã)

n→∞−→
0 for every bounded set B ⊂ X , where dH is the Hausdorff
semidistance.

Let X̂ = {x ∈ I(M) : ϕ(x+k ) < ∞ for all k ∈ N} and
g : X̂ → X̂ be given by g(x) = I(π(ϕ(x))x). The system
(X̂, g) defines a discrete dynamical system on X̂ associated with
the impulsive dynamical system (X,π,M, I).

Definition 9 A set Â ⊂ X̂ is called a discrete global attractor
for (X̂, g) if Â is compact, Â is g-invariant (g(B̂) = B̂), and
dH(g

n(B̂), Â)
n→∞−→ 0 for every bounded set B̂ ⊂ X̂ .

In this work, we establish sufficient conditions for the existence of
global attractors for the systems (X,π,M, I) and (X̂, g). Fur-
thermore, we investigate the relationship between these attrac-
tors. An application involving a nonlinear reaction-diffusion ini-
tial boundary value problem is also presented.
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Eigenvalue bounds for micropolar shear flows

P. Braz e Silva1

Linear stability for general viscous 2D micropolar shear flows [3]

U = (U(y), 0, 0), W = (0, 0,W (y)), y ∈ (0, 1),

is determined by the (dimensionless) equations [2]

iα
[
(U − c)(D2 − α2)− U ′′] ψ̃ =

=
(

1
Rµ

+ 1
2Rk

)
(D2 − α2)2ψ̃ − R0

Rk
(D2 − α2)w̃,

iα
[
(U − c)w̃ −W ′ψ̃

]
=

= 1
Rγ

(D2 − α2)w̃ − 2R0

Rν
w̃ + 1

Rν
(D2 − α2)ψ̃,

where Rγ , Rµ, Rν , Rk, and R0 are dimensionless parameters
and D := d

dy . Let c = cr + ici be any eigenvalue of this sys-
tem. We show bounds for both its real and imaginary parts. The
bounds obtained for the imaginary part ci assure linear stability
for the flow in an specific region of the parameters of the prob-
lem. These bounds are analogous to the classical result of [1] for
flows governed by the Navier-Stokes equations, thus generalizing
this classical result to the micropolar case. These results were pub-
lished in [4].
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Non-residual-based stabilization formulation for

liquid-solid phase-change flows including

macrosegregation scenarios

R.C. Cabrales1, E. Castillo2 and R. Codina∗3

We present a variational multiescale (VMS) finite element
method algorithm to solve liquid-to-solid phase-change prob-
lems, including macrosegregation. If ∇su = 1

2 (∇u+ [∇u]T )
is the symmetrized velocity gradient, the conservation governing
equations solved in Q = Ω × Υ are the linear momentum, the
continuity, the energy equation and the concentration of species
given by:

ρ
∂u

∂t
+ ρ(u · ∇)u−∇ · (2µ∇su) +∇p+Kε(fs,u) = f ,

∇ · u = 0,

ρCp
∂T

∂t
+ ρCpu · ∇T − κ∆T = ρL

∂fs
∂t

∂c

∂t
+ u · ∇cl = 0,

with f = ρg (1− βT (T − Tr)− βc(cl − cr)) the volumetric
force term modeling the coupling between the linear momentum
equation and the temperature and concentration fields through
a double diffusion mechanism, including natural heat and mass
convection. The liquid-solid phase change phenomena is de-
scribed with a modified Carman-Kozeny model:

Kε(fs,u) =
C0µf

2
s

λ2[(1− fs)3 + ε]
u,

with C0 > 0, λ the interdendritic space, and the numerical pa-
rameter ε > 0 used to avoid numerical singularity when fs = 1.
The liquid concentration cl is calculated by the equation

cl =
c

1− (1− r)fs
,

and the solid fraction fs by using the phase diagram and the level
rule.

The VMS framework allows equal-order interpolation for all vari-
ables and convective dominant scenarios. The formulation has
a dynamic term-by-term structure, which reduces the number

of stabilization terms to the minimum, ensuring optimal order
of convergence of the solved fields [1]. Since the problem in-
volves coupling of the velocity, pressure, temperature and species
concentration fields, the resolution algorithm of the equations
is important. This work proposes an orthogonal and dynamic
term-by-term stabilization to approximate numerically liquid-
solid phase change flows, including macrosegregation scenarios
[4]. We present convergence test to highlight the optimal con-
vergence order of the stabilized formulation used, the validation
of the method with classical numerical and experimental bench-
marks, and the approximation of a Pb-Sn binary alloy problem
that generates convection plumes.
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The optimal control approach to analyze some inverse

problems for reaction-diffusion systems arising from

epidemiology

A. Coronel1, F. Huancas2 and M. Sepulveda3

In this talk, we consider the parameter identification problem
for two kind of reaction-diffusion systems: the compartmen-
tal model susceptible-infected–susceptible (SIS) with diffusion.
The direct problem that we consider is a susceptible-infected-
susceptible mathematical model with cross-diffusion, which was
deduced by assuming the following hypotheses: The total popula-
tion can be partitioned into susceptible and infected individuals; a
healthy susceptible individual becomes infected through contact
with an infected individual; there is no immunity, and infected in-
dividuals can become susceptible again; the spread of epidemics
arises in a spatially heterogeneous environment; the susceptible
and infected individuals implement strategies to avoid each other
by staying away. The spread of the dynamics is governed by an
initial boundary value problem for a reaction-diffusion system,
where the model unknowns are the densities of susceptible and
infected individuals, and the boundary condition models the fact
that there is neither emigration nor immigration through their
boundary. The reaction consists of two terms: modeling dis-
ease transmission and infection recovery and the diffusion cross-
diffusion matrix arising from the assumption that the motion of
susceptibles is affected by taxis. The inverse problem is the deter-
mination of rates on the reaction and diffusion terms from ob-
servation of an infected profile on a fixed time. We reformulated
the identification problem as an optimal control problem where
the cost function is a regularized least squares function. The fun-
damental contributions of this article are the following: The ex-
istence of at least one solution to the optimization problem or,
equivalently, the diffusion identification problem; the introduc-
tion of first-order necessary optimality conditions; and the neces-
sary conditions that imply a local uniqueness result of the inverse
problem. Moreover, we present some numerical results and the
extension of the methodology to reaction-diffusion systems aris-
ing from oncology.
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Exact controllability to zero for general linear parabolic

equations

I. Gayte1 and I. Marı́n-Gayte2

This paper studies the existence and characterization of partially
distributed controls that drive the solution of a linear parabolic
problem with general diffusion coefficients to zero in a fixed time
T . Specifically, given Ω ⊂ RN a bounded open set, whose
boundary is C0,1, ω ⊂ Ω an open set and 1ω the character-
istic function on ω, Σ = ∂Ω × (0, T ) and a matrix A ∈
L∞(Ω× (0, T ))N×N satisfying

α|ξ|2 ≤
N∑

i,j=1

Aij(t, x)ξiξj ≤ β|ξ|2 ∀ξ ∈ RN ,

we prove that there exists û ∈ L2(Ω × (0, T )) such that the
solution of the linear parabolic problem

(1)


ŷt −∇ · (A∇ŷ) = û1ω in Ω× (0, T )

ŷ|Σ = 0

ŷ(0) = y0 in Ω,

verifies
ŷ(T ) = 0 in Ω.

The result represents a novelty in control theory for two reasons:
first, because the elliptic operator given by the matrixA does not
have regular coefficients. And the second reason is that domains
of classC0,1 are sufficient.

In [4] we proved the following theorem:

Theorem 10 Let be u ∈ L2(ω × (0, T )), u ≥ c > 0 in
ω × (0, T ) and zero outside of ω, y0 ∈ L2(Ω), y0 ≥ 0. Then,
there exists v∗ ∈ L2(ω × (0, T )), 0 ≤ v∗ ≤ u, ∥Ψv∗(T )∥ <
∥y(T )∥ such that

û =
∥y(T )∥v∗ − ∥Ψv∗(T )∥u
∥y(T )∥ − ∥Ψv∗(T )∥

is a control in ω for the initial data y0.

The solution of a problem like (1) with right-hand side v∗ is de-
noted by Ψv∗ and ∥ · ∥ is the norm inL2(Ω).

When the initial data is any function y0 ∈ L2(Ω), we apply this
theorem with y+0 and y−0 .

The proof is based on a kind of maximum principle in the final
time and the linearity of the equation. It does not use the stan-
dard techniques of Carleman’s inequalities, (see [2], [1]), because
of the diffusion coefficients are not continuous functions in gen-
eral. Besides, the spatial dimension is any (see [3]).
An interesting application of control to this type of problem is
the diffusion of cancer cells in a brain tumor (see [5]). The model
consists of a linear parabolic problem where the diffusion coeffi-
cients are piecewise constant functions.
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Geometric inverse problem of determining

multidimensional domains

A. Jone Apraiz1, B. Anna Doubova2, C. Enrique Fernández-Cara3 and D. Masahiro Yamamoto4

Last decades, the analysis and solution of inverse problems has in-
creased a lot because of their importance in many applications:
elastography and medical imaging, seismology, potential theory,
ion transport problems or chromatography and other similar
fields.

In this talk we will consider a geometric inverse problem for some
linear parabolic systems, where the initial data (and even the co-
efficients) are unknown and the non-homogeneous part of the
equation is expressed as a function of separate space and time vari-
ables. The aim of the work presented here will be the identifica-
tion of a subdomain within a multidimensional set.

We will show the results we have obtained for the uniqueness
property by incorporating observations that can be on the bound-
ary or in an interior domain. Through this process, we will also
see that the information about the initial data can be derived.

During the talk, it will be seen that the main tools that are required
for the proofs of these results include unique continuation, time
analyticity of the solutions and semigroup theory.

All the work that will be shown in this talk has been written in
a preprint and submitted for publication, [1]. Other interesting
related works are [2], [3], [4], [5] and [6].
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Boundary estimation for the Stokes system

Jérôme Le Rousseau 1

Neglecting the inertial term in the Navier–Stokes system leads to
the Stokes system{

∂tU −∆U +∇q = F,

div U = 0.

We are interested in observing this system from an interior region
of a domain. We consider general boundary conditions that in-
clude, for instance, the commonly used Dirichlet, Navier, and
Neumann conditions.

Observation is achieved through a local Carleman inequality near
a boundary point. This inequality is derived from the full system,
including the pressure term.

Carleman inequalities are weighted estimates where the weight is
exponential. For the Laplace operator, it takes the form

(1) τ3/2∥eτφv∥L2 + τ1/2∥eτφ∇v∥L2 ≤ C∥eτφ∆v∥L2 ,

for a function v compactly supported. Here, the parameter τ >
0 can be chosen as large as needed. The choice of the functionφ is
delicate and depends on the intended application of the estimate.
For the Laplace operator, this is a sub-elliptic estimate with a loss
of half a derivative, which is reflected by the term τ3/2 instead of
τ2 in front of the L2-norm of v on the left-hand side of (1); see
for instance [2]. Boundary conditions are also necessary to obtain
an estimate as in (1) near the boundary.

For a parabolic operator, the weight function can be chosen as
in the seminal work of Fursikov and Imanuvilov [1], that is,
φ(t, x) = t−1(T − t)−1ϕ(x) and the estimation has the form

(2) τ3
∫ T

0

∥φ3/2eτφv∥2L2dt+ τ

∫ T

0

∥φ1/2eτφ∇v∥2L2dt

≤ C

∫ T

0

∥eτφ(∂t −∆)v∥2L2dt.

We begin by reviewing how boundary estimates can be obtained
for first-order scalar operators. Then, by expressing the Stokes sys-
tem in the form of a first-order system, we show how various scalar

reductions of the Stokes system can lead to such first-order equa-
tions using eigenvectors and generalized eigenvectors. This anal-
ysis is carried out microlocally in different regions of phase space.

Boundary conditions are handled in the spirit of the treatment
of Lopatinskiı̆-Šapiro conditions for the Laplace operator; see for
instance [3].

We obtain an estimate where there is a loss of a full derivative for
the velocity U , and a loss of half a derivative for the pression q.
The loss of a full derivative makes the analysis sometimes intricate
since this is a threshold that may prevent one to handle remainder
terms that appear along some of the estimations. With a weight
function as for (2), the final estimation we obtain is of the form

(3) τ2
∫ T

0

∥φeτφU∥2L2dt+

∫ T

0

∥eτφ∇U∥2L2dt

+ τ

∫ T

0

∥φ1/2eτφq∥2L2dt ≤ C

∫ T

0

∥eτφF∥2L2dt,

with additional estimations of the Dirichlet and Neumann traces
ofU and q.

This is joint work with Luc Robbiano (Université de Versailles
Saint-Quentin).
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Optimal control problems related to chemo-repulsion

systems

F. Guillén-González1, E. Mallea-Zepeda2, M.A. Rodrı́guez-Bellido∗ and E.J. Villamizar-Roa3

Abstract

In this talk we present bilinear optimal control problems related
to chemo-repulsion systems with linear and superlinear produc-
tion terms in the 2D case and linear in the 3D case. We establish
results on existence of global optimal solutions and derive the re-
spective optimality systems, based on a result of the existence of
Lagrange multipliers in Banach spaces. Finally, we analyze the
main differences (and difficulties) between the 2D and 3D cases.
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Stability of nonlinear Dirac solitons under the action of

external potentials

D. Mellado-Alcedo1 and N. R. Quintero2

The nonlinear Dirac equation in 1+1-dimensions supports local-
ized solitons. Theoretically, these traveling waves propagate with
constant velocity, energy, momentum, and charge. However, the
soliton profiles can be distorted, and eventually destroyed, due
to intrinsic or numerical instabilities. The constants of motion
and the initial profiles can also be modified by external potentials,
which may give rise to instabilities.
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Figure 1: Evolution of the density of the charge from sim-
ulations of the ABS model (a) without and (b) with har-
monic potential.

In this work [1], we study the instabilities observed in numeri-
cal simulations of the Gross-Neveu equation [2] under linear and
harmonic potentials. We perform an algorithm [3] based on the
method of characteristics to numerically obtain the two soliton
spinor components. All studied solitons are numerically stable,
except the low-frequency solitons oscillating in the harmonic po-
tential over long periods of time. These instabilities are identified

by the non-conservation of both energy and charge, and can be
removed by imposing absorbing boundary conditions. We find
that the dynamics of the soliton is in perfect agreement with the
prediction obtained using an Ansatz with only two collective co-
ordinates. By applying the same methodology, we also demon-
strate the spurious character of the reported instabilities in the
Alexeeva–Barashenkov–Saxena (ABS) model [4] under external
potentials.
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On the local null controllability of a cubic

Ginzburg-Landau equation with dynamic boundary

conditions

Nicolás Carreño1, Alberto Mercado∗ and Roberto Morales
2

Let Ω ⊂ Rd (d ≥ 2) be a bounded domain with bound-
ary Γ := ∂Ω of class C2. For T > 0, we define the sets
Q := Ω× (0, T ), Σ := Γ× (0, T ) and for any subset ω ⊂ Ω,
we writeQω := ω × (0, T ).

For a, b > 0 and α ∈ R, we define the linear operators

L(u) :=∂tu− a(1 + αi)∆u

LΓ(u, uΓ) :=∂tuΓ + a(1 + αi)∂νu− b(1 + αi)∆ΓuΓ

Moreover, for c, γ ∈ R we put f(w) := c(1 + γi)|w|2wΓ.
Then, we consider the following system

L(u) + f(u) = 1ωh inQ,
LΓ(u, uΓ) + f(uΓ) = 0 on Σ,

u
∣∣
Γ
= uΓ on Σ,

(u(·, 0), uΓ(·, 0)) = (u0, uΓ,0) in Ω× Γ.

(1)

The controlh acts only on the first equation. This means that the
second equation (i.e., the general dynamic boundary condition)
is controlled by the side condition u

∣∣
Γ
= uΓ.

Let us define the spaces

L2 :=L2(Ω)× L2(Γ),

Hk :={(y, yΓ) ∈ Hk(Ω)×Hk(Γ) : y
∣∣
Γ
= yΓ}

It is not difficult to see that, under a smallness condition on both
the initial data and the control, a unique solution of (1) exists.

Our main result is the following

Theorem 11 Suppose that d = 2 or d = 3 and ω ⋐ Ω. Then,
the system (1) is locally null controllable at every time T in
H1, i.e., there exists δ > 0 such that, for every (u0, uΓ,0) ∈ H1

verifying

∥(u0, uΓ,0)∥H1 ≤ δ,

there exists a control h ∈ L2(ω × (0, T )) such that the solution
(u, uΓ) of (1) satisfies

u(·, T ) = 0 in Ω, uΓ(·, T ) = 0 on Γ.
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The minimal control time for the exact controllability by

internal controls of 1D linear hyperbolic systems

G. Olive1

In this talk we will present the minimal control time for the ex-
act controllability by internal controls of one-dimensional (1D)
linear hyperbolic systems when the number of controls is equal
to the number of state variables. The controls are supported in
space in an arbitrary open subset. This presentation will be based
on the work [1] in collaboration with Long Hu (Shandong Uni-
versity), with preliminary material taken from [2, 3], by the same
authors. An important ingredient is a technique introduced by
Manuel González-Burgos and his collaborators in the survey [4]
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A new mathematical model for cell motility

with nonlocal repulsion from saturated areas

Carlo Giambiagi Ferrari 1, Francisco Guillén-González2, Mayte Pérez-Llanos3 and Antonio Suárez 4

The main purpose of this work is the mathematical modelling of
large populations of cells under different deterministic interac-
tions among themselves, in balance with random diffusion. We
focus on cell-cell interaction mechanisms for a single population
confined to an isolated domain. We derive a macroscopic math-
ematical model including a nonlocal saturation coefficient de-
pending on a crowding capacity, as part of a nonlocal drift term.
Then, this capacity acts as a threshold above which repulsion ef-
fects appear. This macroscopic model is approached using two
different microscopic discrete models based on Eulerian or La-
grangian reference systems, respectively.
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Numerical analysis for a diffusive SIS epidemic model

with repulsive infected-taxis

Francisco Guillén-González1, Diego A. Rueda-Gómez 2 and Marı́a A. Rodrı́guez-Bellido∗

Abstract

This talk is devoted to the numerical study of a reaction-diffusion
SIS epidemic model with repulsive infected-taxis. This model de-
scribes the dynamics of a population, in which susceptible people
v may want to stay away from infective one u. By using a reg-
ularization technique, we propose a finite element fully discrete
scheme using a nonlinear discrete diffusion, which preserves some
qualitative properties such as well-posedness, conservation of the
total mass, point-wise and uniform estimates for u, positivity for
u and approximated positivity for v. The key point to deduce the
approximated positivity property, crucial to avoid the appearance
of spurious oscillations, is to obtain a discrete estimate of a singu-
lar functional associated to infected individuals. Finally, in the
course of some numerical simulations, the new scheme performs
better than other more classical finite element schemes.
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(SPAIN). Email: guillen@us.es, angeles@us.es
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Observability inequality for the Grushin equation

on a multi-dimensional domain

Mathilda Trabut1

Introduction and main result

Let BR denote the open ball of radiusR > 0 of Rd1 , and Ωy de-
note a non-empty bounded open set ofRd2 with d1, d2 > 0. For
T > 0, we consider u a solution of the Grushin equation posed
in (0, T )× BR × Ωy , i.e. satisfying
(G){

∂tu−∆xu− ||x||2∆yu = 0 in (0, T )×BR ×Ωy,

u = 0, on (0, T )×∂(BR×Ωy).

It is a degenerate parabolic equation where the diffusion coeffi-
cient in y vanishes at the center of the ball.

BR

Γ

Ωy

For Γ ⊂ ∂BR, we say that the Grushin equation is observable
through Γ × Ωy at time T if there exists a constant C such that
any solution of (G) satisfies
(OT )∫

BR×Ωy

|∇u(T )|2dxdy ≤ C

∫ T

0

∫
Ωy

∫
Γ

∣∣∣∣∂u∂n
∣∣∣∣2 dσ(x)dydt,

Theorem 12 Let Γ be a non-empty open subset of ∂BR, and
T ∗ = R2

2d1
, then (OT ) holds for all T > T ∗, and (OT ) does not

hold for all T < T ∗.

Remarks: The minimal time T ∗ appears because of the degener-
acy at x = 0. Indeed if there is no degeneracy, the system reduces
to the heat equation which is observable at any T > 0.

If Γ = ∂BR, this result is known, see [1]. The goal of this work is
to generalize this result if Γ is a non-empty open subset of ∂BR.
Since the negative result on ∂BR implies the negative result onΓ,
it remains to prove that (OT ) holds for T > T ∗.

Strategy of proof

We denote (λp, ϕp)p∈N the sequence of eigenvalues and eigen-
functions of the Dirichlet-Laplacian on Ωy . As it is done in [1]
we decompose the equation in the basis (ϕp)p∈N. Then up :=
⟨u, ϕp⟩ satisfies the harmonic-heat equation

(Hp)

{
∂tup −∆up + λ2p||x||2up = 0 in (0, T )× BR,

up = 0, on (0, T )× ∂BR.

The strategy is to prove that (Hp) is observable through Γ uni-
formly in p. Here are the main steps to get this observability in-
equality.

• From [2] we already know that (Hp) is observable through
∂BR at any time T > 0. However, we need to refine this
result to get an observability constant which is explicit in
T and λp.

• We apply a Lebeau-Robbiano type strategy to obtain the
observability through Γ. To this end we adapt Miller’s
proof [3], tracking the dependance in λp in the estimates.

• We deduce that (Hp) is observable through Γ uniformly
in p at time T , if T > T ∗.

Once we have the observability inequality for (Hp) with the con-
stant uniform in p, we obtain (OT ) by summing in p.
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On the null-controllability of subelliptic systems of

Grushin type

Vanlaere Roman 1

In this talk, we will discuss the null-controllability properties of
the heat equation associated with Grushin-type operators, posed
on tensorized domains of two dimensions. That is, parabolic
equations associated with second-order operators whose coeffi-
cients can be either singular and/or degenerated. Our parabolic
operator of interest takes the form

∂t − ∂2x − q(x)2∂y(r(y)
2∂y) + V (x)(1)

where, q a non-zero function that can vanish, r a strictly positive
function, and V is a potential that depends on the choice of a
measure on the domain, eventually singular.

We will first discuss negative results, that may be obtained via

Agmon theory. Then, we will talk about positive results, either
using a constructive approach, as the moments method, or by
means of Carleman estimates.

Finally, if time lets us, we shall briefly discuss how these results
extend on two-dimensional almost-Riemannian manifolds, for
which the metric is degenerated along a submanifold of codimen-
sion one.
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On Keller–Segel models with positive total flux: analytic

and modeling perspectives

Giuseppe Viglialoro1

Since the introduction of the seminal Keller–Segel models,
which provide a mathematical framework for describing chemo-
taxis—the movement of cells or organisms in response to chem-
ical gradients—there has been an explosion of research on vari-
ous extensions and modifications of these models. These stud-
ies have contributed significantly to our understanding of pattern
formation, aggregation, and the dynamics of cell populations un-
der the influence of chemical signals. A unifying feature across
the majority of this body of work is the imposition of zero-flux
(Neumann-type) boundary conditions on the cell density equa-
tion, effectively modeling impenetrable domain boundaries that
prevent cell escape or entry.

In this talk, we depart from this standard assumption and ex-
plore chemotaxis models under the novel premise that the total
cell flux across the boundary is strictly positive, thereby model-
ing domains that are penetrable. Such a setting introduces new
analytical challenges and potential biological interpretations, es-
pecially in contexts where cell inflow or outflow plays a signifi-
cant role. We will present some preliminary results in this direc-
tion and discuss open questions and considerations that arise in
studying these models.

This work is part of an ongoing collaboration with Khadijeh
Baghaei, Silvia Frassu and Yuya Tanaka.
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1Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari. Via Ospedale 72, 09124. Cagliari (ITALY). Email:
giuseppe.viglialoro@unica.it.

39

https://www.fondazionedisardegna.it/
https://www.fondazionedisardegna.it/


Workshop on PDEs and Control 2025 (PKM-60)

September 3-5, 2025, Sevilla, Spain

An optimal control problem related to a 3D

chemo-repulsion model with nonlinear production

F. Guillén-González 1, M.A. Rodrı́guez-Bellido 2, E. Mallea-Zepeda3 and E.J. Villamizar-Roa 4∗

Chemotaxis corresponds to the directional movement of cells or
living organisms influenced by the concentration of the chemical
signal substance. This motion can be towards a higher (attrac-
tive) or lower (repulsive) concentration of the chemical stimuli.
In this paper we are interested in the repulsive chemotaxis sce-
nario, in which the presence of living organisms produce chem-
ical substance, including or not a logistic growth of organisms.
Explicitly, considering Q := (0, T ) × Ω, with Ω ⊂ R3 being a
bounded domain and (0, T ), T > 0, a time interval, we consider
the following system

(1)
{

∂tu−∆u = ∇ · (u∇v) + ru− µup,
∂tv −∆v + v = up + fv 1Ωc

,

where the unknowns are u(t, x) ≥ 0 and v(t, x) ≥ 0 denot-
ing the cell density of some chemotactically active species and the
chemical concentration. The nonlinear term ∇ · (u∇v), on the
right-hand-side (1), describes the repulsion mechanism. In addi-
tion, 1 ≤ p < +∞, r, µ ≥ 0, and f = f(t, x) is the control
function acting on a subdomain Qc = (0, T ) × Ωc ⊂ Q =
(0, T ) × Ω. This system is endowed with initial and non-flux
boundary conditions. We prove the existence of global weak so-
lutions when f ∈ L5/2(Qc), analyzing the role of the diffusion
and the logistic terms to get energy estimates.

Definition 13 (Weak solutions) Let f ∈ L5/2(Qc) :=
L5/2(L5/2(Ωc)), (u0, v0) ∈ Lp(Ω) × H1(Ω), with u0 ≥ 0
andv0 ≥ 0 a.e. inΩ. A pair (u, v) is called weak solution in [0, T ]
of system (1) with initial data (u0, v0) if u ≥ 0 and v ≥ 0 a.e.
inQ, u ∈ L∞(Lp) ∩ L5p/3(Q), v ∈ L∞(H1) ∩ L2(H2),
and u ∈ L2p−1 for p > 3 in the logistic case (µ > 0), and
∇u ∈ Lγ(p)(Q) with

γ(p) =


5p/(3 + p) when 1 < p ≤ 2,
25p/(18 + 5p) when 2 < p < 12/5,
2 when p ≥ 12/5,

satisfying the u-equation (1)1 in a variational sense, and the v-
equation (1)1 holds a.e (t, x) ∈ Q.

Theorem 14 (Existence of weak solutions) Assume
that f ∈ L5/2(Qc), (u0, v0) ∈ Lp(Ω)×H1(Ω), with u0 ≥ 0
and v0 ≥ a.e. in Ω. If 1 < p ≤ 5/3, then there exists a weak
solution of system (1) with µ = r = 0, and if p > 1, then there
exists a weak solution of system (1).

Knowing the existence of global weak solutions, we establish a
regularity criterion through which weak solutions of systems be-
come strong solutions. These strong solutions will give the ad-
equate framework to study the following optimal control prob-
lem:

(2)
{

min J(u, v, f),
subject to (u, v, f) ∈ Sad,

where J : L5p/2(Q)×L2(Q)×L5/2(L5/2+(Ωc)) → R is the
cost functional defined by

J =
γu

5p/2

∫ T

0
∥u−ud∥

5p/2

L5p/2
dt+

γv

2

∫ T

0
∥v−vd∥

2
dt+

γf

5/2

∫ T

0
∥f∥5/2

L5/2+(Ωc)
dt,

for some desired states (ud, vd).We prove the existence of global
optimal solutions and derive first-order necessary optimality con-
ditions for local optimal solutions. All the results presented here
were obtained in [1].
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Existence of non-autonomous exponential attractors for

a reaction-diffusion model with terms inH−1

Aguilar-Reyes, Álvaro1, Marı́n-Rubio, Pedro∗

In this poster we present the results obtained in [1], where we en-
sure the existence of pullback exponential attractors for the pro-
cess associated to a non-autonomous reaction-diffusion problem
under minimal regularity assumptions, in fact with H−1-valued
time-dependent forces. We recall below the definition of pullback
exponential attractor.

Definition 15 Let {U(t, s) : t ≥ s} be a process in a met-
ric space X . The family M = {M(t) : t ∈ R} is a pullback
exponential attractor for the process {U(t, s) : t ≥ s} inX if:

1. The subsets M(t) ⊂ X are non-empty and compact in
X for all t ∈ R.

2. The family is positively semi-invariant, i.e.
U(t, s)M(s) ⊂ M(t) for all t ≥ s.

3. The fractal dimension inX of the sections M(t) for any
t ∈ R, is uniformly bounded.

4. The family {M(t) : t ∈ R} exponentially pullback at-
tracts bounded subsets of X ; that is, there exists a posi-
tive constant ω > 0 such that for every bounded subset
D ⊂ X and for any t ∈ R,

lim
s→+∞

eωsdistH(U(t, t− s)D,M(t)) = 0

The paper is divided into two parts. In both cases, the well-
posedness of the problem and suitable absorbing families allow to
apply two different theorems of existence of pullback exponential
attractors.

A first setting involves a translation bounded force h ∈
L2
b(R;H−1(Ω)) and certain nonlinearities. The existence of the

pullback exponential attractor for this problem will follow the
structure of the main result of [2].

The second block assumes a more general growth for the force.
Namely it is allowed to grow exponentially fast in the past. This
implies that the absorbing family also satisfies the same type of
growth. This better generality allows us to apply the result on the
existence of a pullback exponential attractor obtained in [3].

This is a work in collaboration with Professor Pedro Marı́n Ru-
bio.
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Eigenvalues and Maximum Principle Results

for Nonlocal Diffusion Problems

A. A. Casado Sánchez1, B. M. Molina Becerra2 and C. A. Suárez ∗

Let Ω ⊂ RN be a bounded open set, and let K ∈ C0(Ω ×
Ω;RM×M ). We study a class of nonlocal problems that include
an integral term of the form∫

Ω

K(x, y)u(y) dy,

where the kernelK models the influence of the values of u at dis-
tant points. Such operators naturally arise in population dynam-
ics, where u(x) may represent the population density at location
x, and the integral term accounts for the individuals moving from
one point to another across the habitat.

Our main objective is to establish the existence of nonnegative
continuous solutions to such systems using the method of sub-
and supersolutions, following an approach similar to the one in
[1], [2], and [3].

To this end, we construct suitable ordered bounds u and u and
prove the existence of a solution u satisfying u ≤ u ≤ u. A
crucial part of the analysis involves the study of eigenvalues.

Furthermore, we prove a strong maximum principle showing
that, under suitable assumptions, any nonnegative solution must
be strictly positive unless it vanishes identically. These results ex-
tend classical tools from elliptic PDE theory to a nonlocal, vector-
valued setting.

Finally, we present numerical simulations that illustrate the
applicability of our theoretical results.
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1Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, C. Tarfia, 41012 Sevilla (SPAIN).
Email: acasado2@us.es, suarez@us.es
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Temporal Decay for Non-Newtonian Micropolar Fluids

Felipe W. Cruz1, Marı́a A. Rodrı́guez-Bellido2 and Marko A. Rojas-Medar3

In this contribution, we study the long time behavior of weak
solutions for a class of non-Newtonian micropolar fluids in R2.
Moreover, we investigate the asymptotic behavior of these solu-
tions by comparing them to the solutions of the linear part. More
precisely, we are interested in studying the following Cauchy
problem:

(1)



ut + (u · ∇)u− (µ+ χ)∆u+∇p
−2νdiv(|e(u)|q−2e(u)) = 2χrotω,

divu = 0,

ωt + (u · ∇)ω − γ∆ω + 4χω = 2χrotu,

(u, ω)
∣∣
t=0

= (u0, ω0),

where q ≥ 3 is a given constant (fixed, but otherwise arbitrary),
and u(x, t) ∈ R2, p(x, t) ∈ R, and ω(x, t) ∈ R are the un-
knowns denoting the linear velocity, hydrostatic pressure, and an-
gular velocity, respectively. The positive constants µ, ν, χ, and γ
are related to viscosity. Furthermore, we denote u0 andω0 as the
initial data for the linear velocity and the angular velocity, respec-
tively, all assumed to be in L2(R2) and such that divu0 = 0 in
distributional sense. Next, we will present the concept of a weak
solution to the IVP (1).

Definition 16 A weak solution to the system (1) is any pair
(u, ω) that satisfies:

u, ω ∈ L∞(
0,∞;L2(R2)

)
∩ L2

(
0,∞;H1(R2)

)
,

u ∈ ∩Lq
(
0,∞;W 1,q(R2)

)
,

with (u, ω)(0) = (u0, ω0) and which satisfies the equations
weakly inR2× (0,∞). Additionally, for s = 0 and almost every
s > 0, we have:

∥(u, ω)(t)∥2L2 +

∫ t

s

{
2µ∥∇u(τ)∥2L2 + 4ν∥e(u)(τ)∥qLq

}
dτ

+2γ

∫ t

s

∥∇ω(τ)∥2L2dτ ≤ ∥(u, ω)(s)∥2L2 , ∀ t ≥ s.

Our main results are as follows.

Theorem 17 Let u0 ∈ L1(R2) ∩ L2
σ(R2), ω0 ∈ L1(R2) ∩

L2(R2), and q ≥ 3. Then for a weak solution (u, ω) of (1), we
have that

∥u(t)∥L2 ≤ C(t+ 1)−
1
2 , ∀ t ≥ 0,

∥ω(t)∥L2 ≤ C(t+ 1)−1, ∀ t ≥ 0.

The next result states that the solutions to equations (1) are
asymptotically equivalent to the solutions of the associated linear
problem with the same initial data.

Theorem 18 Let (u, ω) be a weak solution of problem (1), and
(u, ω) the solution to the linear part with the same initial data
u0 ∈ L1(R2) ∩ L2

σ(R2) and ω0 ∈ L1(R2) ∩ L2(R2). Then,
for q ≥ 3, we have:

∥u(t)− u(t)∥L2 ≤ C(t+ 1)−1 ln(t+ 1), ∀ t≫ 1,

∥ω(t)− ω(t)∥L2 ≤ C(t+ 1)−
3
2 ln(t+ 1), ∀ t≫ 1.
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Abstract Cauchy problems via generalized ODEs

Lucas Henrique Destro de Toledo1, Everaldo de Mello Bonotto∗ and Tomás Caraballo Garrido2

Regarding linear evolution equations - extensively studied on [1]
and [3] - the autonomous case in Banach space is covered by semi-
groups:

Definition 19 A family {T (t)}t∈R+ ⊂ L(X) is called
a bounded linear strongly continuous semigroup (or simply
C0−semigroup) if T (0) = IX , T (t + s) = T (t)T (s) for all
t, s ⩾ 0, and lim

t→0+
T (t)x = x, for all x ∈ X.

Additionally, the operator A : D(A) ⊂ X → X given by

Ax = lim
t→0+

T (t)x− x

t

is the (uniquely correspondent) generator of {T (t)}t∈R+
.

Considering the abstract Cauchy problem

(1)
{
ẋ(t) +Ax(t) = f(t) , t > 0,
x(0) = x0 ∈ X

where X is a Banach space, A the infinitesimal generator of a
C0−semigroup {T (t)}t∈R+ and f : R → X is the non-
homogeneous therm - also called as a perturbation - it was nat-
ural to assume locally absolutely integrable (f ∈ L1

loc(R+, X))
in order to define mild solutions since evolution equations theory
lies on Bochner-Lebesgue’s integration theory.

Definition 20 Let −A : D(A) ⊂ X → X be the generator
of a C0−semigroup {T (t)}t∈R+

and f ∈ L1
loc(R+, X). The

function u ∈ C0([0, T ], X) given by

u(t) = T (t)x0 +

∫ t

0

T (t− τ)f(τ)dτ,

is called a mild solution for 1.

On the other hand, in nature, we can expect locally non-
absolutely integrable perturbations due to high oscillations or
many discontinuities. In fact, there are integrals - such as Hen-
stock’s - that are capable of handling such equations.

Definition 21 Let f : [a, b] → X be a function. We say
that f is Henstock integrable over [a, b] (f ∈ H([a, b], X), if
there exists an associated function F : [a, b] → X such that
for every ϵ > 0, there exists a gauge δ : [a, b] → (0,+∞)

such that for every division d = {(τi, [si−1, si])}|d|i=1 of [a, b],
in which τi ∈ [si−1, si] ⊂ (τi − δ(τi), τi + δ(τi)) for each
i ∈ {1, . . . , |d|},we have

|d|∑
i=1

∥f(τi)(si − si−1)− [F (si)− F (si−1)]∥ < ϵ.

This concept extends the definition of mild solutions to Hen-
stock mild solutions

Definition 22 Let −A : D(A) ⊂ X → X be the generator
of aC0−semigroup {T (t)}t∈R+ ,w > 0, and f : [0, w) → X
be a function such that pt(·) = T (t − ·)f(·) ∈ H([0, t], X)
for every t ∈ [0, w). The function u ∈ C0([0, w), X) given by

u(t) = T (t)x0 +

∫ t

0

T (t− τ)f(τ)dτ,

where the above integral is in the sense of Henstock, is called a
Henstock mild solution of system (1).

The main objective of this work is dealing with linear evolution
equations of the form (1) with non-absolutely integrable pertur-
bations. In order to do this, we approach the problem within a
suitable theory of differential equations that deals with Kurzweil
and Henstock non-absolutely integrals: the theory of generalized
ordinary differential equations, or simply GODEs - see [2], [4].
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Reduced Order Model for Time Splitting Schemes

Mejdi Azaı̈ez1 , Tomás Chacón2 , Carlos Núñez†, Samuele Rubino†

This poster presents recent advances in reduced order model-
ing(ROM) for incompressible fluid dynamics problems, focusin-
gon time-splitting schemes and Proper Orthogonal Decomposi-
tion(POD). Two contributions are highlighted. First, we pro-
posea POD-Galerkin ROM for the Navier Stokes equationswith
open boundary conditions, where a low-dimensional PDEis
solved on the boundary to impose an equivalent Dirichletcon-
dition on the pressure. We compare a standard projectionbase-
dROM with a hybrid model that integrates data-drivenRadial Ba-
sis Functions (RBF), demonstrating improved flexibilityand ac-
curacy in complex geometries such as bifurcatedtubes and flow
past a cylinder. Second, we explore a first-orderROM formu-
lation for the unsteady Stokes equations based onthe pressure-
correction Goda scheme. Here, different innerproducts are used
to construct reduced bases, enabling explicitreduced formula-
tions for both velocity and pressure. Stabilityand error analyses
support the robustness of the approach, and numerical tests con-
firm its effectiveness, including for parametrized Navier Stokes

problems. Together, these resultsillustrate the potential of POD-
ROMs for efficient and accuratesimulation of complex, time-
dependent incompressible flows.
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Mathematical modeling of Neuroblast Migration

towards the Olfactory Bulb

Daniel Acosta-Soba1, Carmen Castro2, Noelia Geribaldi-Doldán3, Francisco Guillén-González4,
Pedro Nunez-Abades5, Noelia Ortega-Román∗,Patricia Pérez-Garcı́a6, and J. Rafael Rodrı́guez-Galván∗

This work is focused on mathematical modeling of the migra-
tion of neuroblasts (immature neuron cells) along the Rostral Mi-
gratory Stream in rodent brains [1]. According to our model it
is determined mainly by attraction forces to the olfactory bulb,
and also by the heterogeneous mobility of neuroblasts in differ-
ent regions of the brain. Carefully identifying them as solutions
to partial differential equations allows us to determine the move-
ment of neuroblasts in a realistic fashion. We develop numerical
schemes where the application of novel discontinuous Galerkin
methods [3] allows to maintain the properties of the continuous
model. We present some successful computer tests including pa-
rameter adjustment to fit real data.

The model of neuroblast evolution

Let Ω ⊂ R2 be an open set representing a rodent brain, with
boundary ∂Ω and T > 0. We consider the following problem
modelling the evolution of the density of neuroblasts:

ut + χ∇ · (u∇O) + αu− γ u1NZ = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

where O = O(x, y) ∈ R is a potential function whose gradient
∇O models the attraction exerted by the olfactory bulb.

The olfactory bulb chemoattractant function

We consider the next source term, defined as a Gaussian function
centered at the middle point of the olfactory bulb:

fO(x, y) = e−((x−xO)2+(y−yO)2)/σ2

.

And we consider the following problem: findO ∈ H1(Ω) as the
solution to the boundary-value problem{O −∇ · (µO ∇O) = fO in Ω,

O = fO on ∂Ω.

where µO is a piecewise constant function which will be used as
an anisotropic diffusion coefficient.

Numerical tests and adjustment to real data

After an optimization process, in which we use real data obtained
from rodent brain images, we determine an adequate initial con-
dition in realistic brain domains. This initial condition comes
from a similar stationary problem. Also, we obtain the following
parameters for the neuroblast evolution model:

α = 1.951·10−1, χ = 2.241·10−2 and γ = 3.548.

The relative quadratic error made by our simulation of the entire
migration process with respect to the real data is: E = 0.28. We
have represented the neuroblasts migration process for the opti-
mal parameters:
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The stochastic TR-BDF2 and ICC model

T. Caraballo1, M. Gómez-Mármol∗ and I. Roldán∗

Ordinary differential equations and their numerical analysis aim
to model numerous real-world phenomena. While numerical
analysis is well-established in the deterministic context, the intro-
duction of stochastic terms allows us to capture the inherent ran-
domness present in natural processes, unlocking characteristics
unattainable in deterministic problems.

The numerical resolution of the stochastic systems required tai-
lored development of methods, along with a comprehensive un-
derstanding of error analysis, convergence rates, and other related
concepts [2]. This approach is crucial for comprehending the
stochasticity and can be supported by the extensive literature de-
voted to numerical analysis in the deterministic case.

In this talk, our focus is the development and numerical examina-
tion of the stochastic version of the TR-BDF2 method:

Given yn,∀n = 0, . . . , N − 1,

yn+γ = yn +
1

2
(a (tn, yn) + a (tn+γ , yn+γ))hγ,

yn+1 = γ3yn+γ + (1− γ3) yn + a (tn+1, yn+1)hγ2.

We delve into its performance characteristics, focusing on pre-
serving the second-order accuracy of the deterministic counter-
part and conduct stability analysis in the presence of stochastic
terms. Additionally, we present validation tests in academic stiff
scenarios to assess the practical applicability of the theoretical re-
sults obtained.

In particular, we are interested in studying a stochastic formula-
tion of the following fast-slow ICC model [1]:

ẋ = τ

(
−y + αx− x3 − µz

z + z0
+ Iext

)
,

ẏ = τε (x+ a1y + a2) ,

ż = τε

(
λ

1 + exp (−ρ (x− xon))
− z − zb

τz

)
.
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Optimal Control for Degenerate Chemotaxis Models

Sarah Serhal1 2, Georges Chamoun 3, Mazen Saad∗ and Toni Sayah†

In this presentation, we study a controlled chemotaxis model aris-
ing from biology, formulated as a parabolic-parabolic system with
degenerate diffusion and a control term acting on the concentra-
tion of the chemoattractant. The objective is to determine an op-
timal control on the chemoattractant concentration in order to
reach a target cell distribution, particularly in the context of can-
cer treatment, where the goal is to minimize cancer cells.

This problem is formulated as a constrained optimization prob-
lem, where the constraints are defined by the weak solutions of
the controlled model. Unlike classical approaches based on strong
regularity assumptions for the state solutions, our formulation
focuses on weak solutions. This approach allows us to guarantee
the existence of an optimal control while simplifying both the
mathematical analysis and the formulation of the adjoint system,
especially in the case of degenerate diffusion. Previous studies (see
[1, 2]) have not addressed the specific issue of diffusion degener-
acy, which represents a major difficulty in our framework. Our
main objective is therefore to study the existence of weak solu-
tions for the optimal control problem associated with chemotaxis
models involving a diffusion function with two-sided degeneracy.

We first prove the existence of solutions for the controlled model
using a semi-discretization in time inspired by [3]. We show that
the semi-discrete solution satisfies the maximum principle for any
control, where the positive part is treated explicitly and the nega-
tive part implicitly.

We then establish the existence of an optimal control and its cor-
responding adjoint system using the Lagrange multiplier method.
Unlike classical cases, this multiplier satisfies a backward parabolic
equation, which is well-posed only when the final time is fixed.
The equation associated with the Lagrange multiplier itself
presents a degenerate structure, posing additional analytical chal-
lenges. We therefore define a regularized system to overcome the
degeneracy under certain regularity conditions (see [4])
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