Why (partial) differential equations? Why

control problems? What for?
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Using mathematics to describe real phenomena
A very relevant tool: differential equations
Introduce, solve and control
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Preliminaries

Sentences

Galileo Galilei, 1564—1642:
God wrote the universe with mathematics
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Preliminaries
Sentences

Leonhard Euler, 1707—-1783:

In view of God’s perfection, nothing happens in the universe without
submission to a maximum or minimum rule
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Preliminaries
Sentences

Henri Poincaré, 1854-1912:

- Mathematics is the art of giving the same name to different things.
- A science is a system of laws deduced from observation. The laws
are, in sum, differential equations.
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Preliminaries
Fundamental concepts

Rules that assign quantities to other quantities l

Examples:

@ The position of a particle: t — x(f)
@ The temperature of a body: (x, t) — 6(x, t)
@ The pressure of a fluid: (xy, X2, X3, t) — p(X1, X2, X3, t)
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Preliminaries

Fundamental concepts

Derivatives:
Tools that indicate how quickly a function changes

Examples:

@ The velocity and the acceleration of a particle: t — x(t), t — x(t)
@ The time rate change of the temperature: (x, t) — 6:(x, )

@ The changes in space of the pressure: (x,t) — px. (X, t),
i=1,2,3

Differential equations:

Identities where functions and their derivatives appear

Usually: motivted by physical, chemical, biological etc. laws

E. Fernandez-Cara (Partial) differential equations and control problems



Ordinary differential equations

The early times: the motion of planets

The first fundamental and starting point:

The description of planetary motion

Three relevant steps:
@ Azarquiel, Cordoba (Spain), XI Cent
@ Johannes Kepler (1577—1630), Central Europe, XVI Cent
@ Sir Isaac Newton (1643—-1727), United Kingdom, XVII Cent
Newton’s contribution:
@ Kepler's laws + reflexion = UGL

@ Then, UGL + conservation laws + mathematics = KLs
through ORDINARY DIFFERENTIAL EQUATIONS
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Ordinary differential equations

The early times: the motion of planets

With the notation of our days:
x=Xx(t), teR; theSun(M)and a planet (m)

e Linear momentum: mx = F (F = —VU(x))
e Angular momentum: mx x x =N (constant)
e Energy: 1m[x|2 + U(X) = E (constant)

e UGL: U(x) = ~GmMp;  (F = ~GmM )

Computations give (among other things):
Q@ x(t) = (r(t) cosp(t))es + (r(t) sinp(t)) ez
Orbits are on a plane
Q r(t)= ﬁéwm for some Cy, C,
Orbits are elliptic and satisfy KLs

Major consequences:

Invention of differential equations, Birth of calculus (Leibniz?)
Explanations of phenomena (Hooke?)
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Ordinary differential equations

More recent achievements in biology

Growth models in population dynamics
T. Malthus (1766—1834), V. Volterra (1860—1940), P.F. Verhulst
(1804-1849), B. Gompertz (1779-1865)

@ Malthus (exponential) law: N = pN
@ Logistic law: N = pN — RN?
e Gompertzian law: N = pNlog £, etc.
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Ordinary differential equations

More recent achievements in biology
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Figure: The evolution in time of a Mathusian population. N = pN
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Ordinary differential equations

More recent achievements in biology
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Figure: The evolution in time of a logistic population. N = pN — RN?
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More recent achievements in biology
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Figure: The evolution in time of a Gompertzian population. N = pN log(6/N)
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Ordinary differential equations

More recent achievements in biology

Lotka-Volterra predator-prey models
Alfred J. Lotka (1880—1940) and Vito Volterra (1860—1940)

X =ax —bxy, y=-cy+dxy

x = x(t) and y = y(t) are resp. the prey and predator populations
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Ordinary differential equations

More recent achievements in biology

Prey-Predator evolution

Time

Figure: The evolution in time of a prey-predator system
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Partial differential equations

Stationary phenomena

The Laplace and Poisson (elliptic) PDEs

e Gravitational and electromagnetic fields in R3: F(x) = —V U(x), with

—~AU=p(x)1p, x€R3,
U—0 as|x|— +oo

Notation: AU := Uy, x, + Uk, %, + Uxz x5
Good strategy: compute U, then F (Laplace, Dirichlet, Poisson, ...)

e Ideal fluid in R? \ B: v = V x 1, with

~Ap =0, (x1,%)cR?*\B
=0, (X1,X) €0B; ¢ — s, |(X1,X)| = +o0

o Probability of leaving a region R ¢ R? through ' C 9R:

—AU:= —Uyx 5 —Upx, =0, (X1,X2) € R
u=1r, (x1,X%)€0R
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Partial differential equations

Stationary phenomena

The probability of leaving a room

IsoValue

W0.444444
m0.502924

m1.05848
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Partial differential equations

Time-dependent phenomena: Taylor, D’Alembert, Fourier, . ..

Taylor's and D’Alembert’'s achievements:

A PDE for the elastic string and a formula for its solutions
Up — C2UXX =0, (X7 t) S (0, 1) X (07 T)

u(x, t) = f(x + ct) + g(x — ct)

J. D’Alembert, “Refléxions sur la cause des vents”, Prusian Academy
Prize, 1747

Fourier's achievements:

A PDE for heat propagation and its solutions
Ut*kuxxzov (X,t)€(0,1)><(0, T)

) cos(nmx) + vu(t) sin(nrx)}
n>1

J. Fourier, “Sur la propagation de la chaleur dans les solides”, Paris
Academy Prize, 1811
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Partial differential equations

Time-dependent phenomena

The vibrating string
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Partial differential equations

Time-dependent phenomena

The evolution of temperature
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Partial differential equations

Time-dependent phenomena

Other evolution PDEs: the Navier-Stokes system
C. Navier (1785-1836), G.G. Stokes (1819—-1903)
The Navier-Stokes PDEs for a viscous incompressible fluid:

p(us + (u-V)u) — pAu + Vp = pf
V-u=0

(x,t) € D x (0,400), with DC RV, N=20or N =3
u = u(x, t) velocity, p = p(x, t) pressure, p, u > 0, f is given
New (major) difficulty: nonlinearity —Much more difficult to solve!

Interesting questions: existence, uniqueness, regularity, additional
properties

Clay Prize, 108 Dollars!

Fortunately: 3 numerical methods!
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Partial differential equations

Time-dependent phenomena

The pressure of a NS fluid around an airfoil

IsoValue

M0.0447706
M0.0891106
m0.133451
m0.177791
m0.222131
W0.266471
m0.310811
W0.355151
M0.399491
W0.510341
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Partial differential equations

Time-dependent phenomena
A more complex system: cancer angiogenesis (N, h) and blood
viscoelasticity (u, p, 7):
Nit+u-VN -V .- (D(N)VN) = -V - (NVh) + H(N)
hi+u-Vh—V - (E(h)Vh) = K(N, h)
p(Ur+ (u-V)u) — pAu+Vp =V - 7+ pf
V-u=0
Tt+U-V)r+ar+g(Vu,7) =2bDu
g(Vu, 7): bilinear, taking into account frame invariance

Much more difficult to analyze and solve! — Keller, Segal, ???77?

Again many questions: existence, uniqueness, regularity, etc.
For instance: do classical (regular) solutions exist? (unknown)

Again: numerical methods give results
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Partial differential equations

Time-dependent phenomena

Tumor growth evolution in low vascularization regime
(results by MC Calzada and others, 2011)
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Partial differential equations

Basic ideas for existence, uniqueness, . ..

ANALYSIS OF NONLINEAR PDEs

EWW)=F +...

Existence (steps):

e Approximation: E(Uy)=F, +..., h—0

e Estimates: ||Up|lx < C

e Compactness: Uy — U weakly in X, strongly in Y, with X — Y
e Conclusion: 3 solutions U € X

OK for Navier-Stokes and many variants
Not so easy for Oldroyd-like systems:

V-u=0

p(U+ (U-V)U) — pAu+Vp =V -7+ pf
T+ (u-V)r+ar+g(Vu,7) =2bDu

Estimates: only sometimes; Compactness is not immediate
(contributions by EFC, F Guillén and others)
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Partial differential equations

Basic ideas for existence, uniqueness, . ..

ANALYSIS OF NONLINEAR PDEs

E(U)=F +...

Existence (steps):

e Approximation: E(Uy)=Fp +..., h—0

e Estimates: |Uy||x < C

e Compactness: U, — U weakly in X, strongly in Y, with X — Y
e Conclusion: 3 solutions U € X

Again unclear for temperature-dependent flows:
us+(u-Viu—vV- (v(0)Du) + Vp =1
V.-u=0
0:+u-Vo—V - (k(0)DO) = v(6)Du Du

Estimates: only in L' !
(contributions by B Climent, EFC and others)
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Partial differential equations

Basic ideas for existence, uniqueness, . ..

ANALYSIS OF NONLINEAR PDEs

EW)=F +...

Existence (steps):

e Approximation: E(Uy)=F, +..., h—0

e Estimates: ||Up|lx < C

e Compactness: Uy — U weakly in X, strongly in Y, with X — Y
e Conclusion: 3 solutions U € X

Uniqueness and regularity:
e Rely on (very) good estimates: small X
e Usual argument for uniqueness:
0=EU;) - E(Uz) = E(Us, Up) - (Uy — Up) = Uy = Us

Unknown for 3D Navier-Stokes
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Control issues

The meaning of control: optimal control and controllability

Up to now: analysis and (numerical) resolution of

Ll

From now on: control, i.e. acting to get good (or the best) results .. .

What is easier? Solving? Controlling?
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Control issues

The early times: XVIII, XIX Centuries and control engineering

James Watt, 1736—-1819 — The steam engine
(later analyzed by G. Airy, J.C. Maxwell)
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Control issues

The early times: XVIII, XIX Centuries and control engineering

Figure: Steam engines

Main ideas: balls rotate around an axis, increasing velocity open
valves, scaping vapor diminishes velocity.

This way: autoregulation, optimal performance, constant velocity, etc.
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Control issues

The meaning of control: optimal control and controllability

The (general) optimal control problem;

Minimize J(v, y)
Subjectto v € Vag, y € Vag, (v,y) satisfies (S)
with

The (general) controllability problem:

Find v € V4 such that Ry € Z44

Main questions: 3, uniqueness/multiplicity, characterization,
computation, ...
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Control oriented to therapy and tumor growth

Optimal radioterapy strategies (l)

Lian-Martin model for tumor growth: Without and with radiotherapy

140 cells X 1.608 B cells X 1.608
drug concentration s drug concentration
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Figure: Controlling tumor growth (towards optimal therapy strategies, |). The
state (cells+drug) solves y; = A\ylog(68/y) — k(v — V&)+y, Vi =uU—~yv
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Control oriented to therapy and tumor growth

Strategies based on senescence
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Figure: Controlling tumor growth, Il). The state (healthy + senescent +
long-life + inmortal + tumoral cells) solves a 5 x 5 ODE, controlled by u
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Control oriented to therapy and tumor growth

Optimal radioterapy strategies (I1)

MDELLING AND OPTIMIZING RADIOTHERAPY STRATEGIES
(glioblastoma, results by R Echevarria and others, 2007)

e Brain ~ a two-dimensional crown section
e 2 subdomains
e Parameter values in agreement with [Alvord-Murray-Swanson 2000]

8c
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Control oriented to therapy and tumor growth

Optimal radioterapy strategies

The state equation (description of the phenomenon):

{ ¢ — V- (D(x)Ve)=(p—vi,)e, (x,1)eQx(0,T)
Climo=Co, X€Q (E)
A ooe

¢ = c(x, t) is the state: a cancer cell population density

v = v(x, t) is the control: a radiotherapy administration dose
Glioblastoma [Murray-Swanson, 90’s], D(x) = Dy, or Dy (white and
grey matters)

The optimal control problem:

Minimize J(v,y) = 3 [, lc(x, T)[2+ 3 Joioy IVIP
Subjectto 0 <v <M, [[ onV <R ... (v,y) satisfies (E)
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Control oriented to therapy and tumor growth

Intermitent therapy (realistic) - A numerical solution

(0]
[
o
@, 2
: )
‘ Evolution after detection (no therapy)
\ Evolution after detection (optimal therapy) \
See more in:

@ http://mathematicalneurooncology.org/
Kristin Swanson

@ http://mathcancer.org/
Paul Macklin
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Control oriented to therapy and tumor growth

The “good” control problem: exact controllabiliy to the trajectories
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Figure: The desired, the uncontrolled and the controlled trajectories
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Controlling fluids
An exact controllability problem

Local exact controllability to a fixed flow
Again Navier-Stokes, local ECT:

vy, 1) =0, (x,t)€dQx(0,T)

Y+ (y-V)y-Ay+Vp=vi,, V-y=0
(NS)
y(x,0) = y°(x)

Fix a solution (Y, p), withy € L
Goal: Find v such thaty(T) =y(T)

Fortunately: possible, at least if y° is not too far from y(0)
Question: is this always possible? (unknown)
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Controlling fluids

An exact controllability problem

T
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Figure: The desired, the uncontrolled and the controlled trajectories
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results

Results by EFC and DA Souza, 2014
Test 1: Poiseuille flow

7 = (4X2(1 - XZ),O)a l_) = 4xq
(stationary)

FPOISEVILLE

FOISEUILLE

Figure: Poiseuille flow
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results
Test 1: Poiseuille flow Q = (0,5) x (0,1),w =(1,2) x (0,1), T =2

Yo=YV+mz, z=Vx1, v=(1-y)>y2(5-x)°x>(m<<1)
Approximation: Ps in (X1, X2, t) + multipliers . ..— freefem++

K y%

Figure: The Mesh — Nodes: 1830, Elements: 7830, Variables: 7x 1830
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results

Test 1: Poiseuille flow

STATE, x COMPONENT, CUT t=0

STATE;CUTt=0

Figure: The initial state
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results

Test 1: Poiseuille flow

STATE,x COMPONENT;CUTt=1.1

STATE,CUTt=1.1

Figure: The state at t = 1.1
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results

Test 1: Poiseuille flow

STATE, x COMFONENT; CUT t=17

STATE;CUTt=17

Figure: The stateatt = 1.7

ZPoisseuille.edp
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results
Test 2: Taylor-Green (vortex) flow

Y = (sin(2x1) cos(2xz2)e~8 — cos(2x;) sin(2xz)e®")

TGsttet -t

Figure: Taylor-Green flow
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow

Figure: The Taylor-Green velocity field
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow

Q=(0,7) x (0,7), w=(7/3,27/3) x (0,1), T =1
Yo=YV+mz, z=V x1, = (7 —y)>2y?(nm — x)°x% (m << 1)
Approximation: P, in (xy, x2) and t + multipliers ... — freefem++

Figure: The mesh — Nodes: 3146, Elements: 15900, Variables: 7x3146
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results

Test 2: Taylor-Green (vortex) flow

ad

Figure: The initial state
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results

!
.

Figure: The state at t = 0.6
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Controlling fluids

Exact controllability to a fixed flow - Numerical approximations and results
Test 2: Taylor-Green (vortex) flow
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Figure: The state at t = 0.9
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Control issues
General ideas to get controllability

NULL CONTROLLABILITY OF NONLINEAR EVOLUTION PDEs

ye—AWy)=F(v), y0)=x, y(T)=0 + ...
Existence (steps):

e Linearization:
yi—A )y =F(©O)v, y(0)=x, y(T)=0, +...
o 3 for the linearized problem:
NC < R(M) < R(L) < [¢(0)|% < CIIF'(0)*|l}, Vo € H
-0t —A(0)¢=0, o¢(T)=¢o + ... Carleman estimates
e Passage from linear to nonlinear: fixed-point, implicit function, ...

Unfortunately: in general, only local results, i.e. small yp
(global Inverse Function Theorems?)

Contributions by Russell, J-L Lions, Fursikov, Imanuvilov, Lebeau,
Zuazua, Coron, ...; also EFC, A Doubova, M. Gonzalez-Burgos,
DA Souza, ...New ideas?
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Control issues
Some recent real-world achievements

3 many applications of control theory to real-world problems
@ Engineering
@ Economics
@ Biology and Medicine, etc.
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Geometric co

Aerodynamic profiles

Figure: Controlling an aerodynamic profile (l): a car
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Geometric control

Aerodynamic profiles

Figure: Controlling an aerodynamic shape (ll): a rocket. (a) Initial design; (b)

and (c) computed optimal designs
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Controllability
Trajectories

Figure: Controlling the trajectory of a space shuttle.
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Control issues

Some recent real-world achievements

Figure: The POP project, INRIA, France. Automatic vision and expression.
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Optimal control + controllability

Automatic driving

Figure: The ICARE Project, INRIA, France. Autonomous car driving.
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Optimal control + controllability
Automatic driving

The autonomous car driving problem

x = f(x,u), x(0)=xo
with
dist. (x(t), Z(t)) > ¢
U€EUag (Ju(t) < C)
Goals (prescribed xr and X)
@ x(T)=xr

@ Minimize sup; |x(t)

vt

— X(1)]
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Optimal control + controllability

Automatic driving

Figure: The ICARE Project, INRIA, France. Autonomous car driving.
Malis-Morin-Rives-Samson, 2004

| The car in the street
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Final comments

SOME CONCLUSIONS:

@ Along the time: better descriptions (more precise, more
complete) and more complex tools

@ For many interesting problems we can get

Models

Theoretical results

Numerical (approximated) solutions

e Qualitative and quantitative information on control properties

Still many thingsto do . ..

@ Why (partial) differential equations? Why control problems?
What for?

e To enlarge and improve scientific knowledge
e To understand, describe and govern the behavior of real-life
phenomena
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Final comments

OUR GROUP (A SHORT DESCRIPTION, PEOPLE INVOLVED):

@ M Delgado, | Gayte, M Molina, C Morales, A Suarez, ...
Theoretical results for PDE models concerning tumor growth:
angiogenesis and metastasis modelling, stem cell models, etc.

@ B Climent, F Guillén, JV Gutiérrez Santacreu, MA Rodriguez
Bellido, G Tierra, ...
Theoretical and numerical control for PDE models from fluid
mechanics: cristal liquids, solidification processes, etc.

@ A Doubova, EFC, M Gonzalez Burgos, DA Souza, ...
Theoretical and numerical analysis and control of linear and
nonlinear PDEs and systems: Navier-Stokes-like controllability,
non-scalar control problems, etc.
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MUCHAS GRACIAS ...
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