Lecture 1: Some illustrative optimal control problems

Enrique FERNÁNDEZ-CARA

Dpto. E.D.A.N. - Univ. of Sevilla

Four interesting optimal control problems Results and open questions They lead to new theoretical results ... They are connected to applications ... The state equation:

$$\begin{cases} \mathcal{A}(y) = \mathcal{B}(v) \\ + \dots \end{cases}$$
(S)

The cost:

 $(v, y) \mapsto J(v, y)$

The constraints:

$$v \in \mathcal{V}_{ad}, y \in \mathcal{Y}_{ad}$$

The optimal control problem:

Minimize J(v, y)Subject to $v \in \mathcal{V}_{ad}$, $y \in \mathcal{Y}_{ad}$, (v, y) satisfies (S)

Main questions: 3/uniqueness/multiplicity, characterization, computation, ...

Outline

Optimal control of a capacitor

- The problem
- The main results and their proofs

Control on the coefficients, homogenization, optimal materials

- The original problem
- The relaxed problem

- The problem
- An optimality result

Optimal control oriented to therapies for tumor growth models

- The problem
- The results

 $\Omega \subset \mathbb{R}^N$ bounded, regular, connected, open; $\Gamma = \partial \Omega$. $\omega \subset \subset \Omega$ non-empty, open; 1_ω : the characteristic function The state system:

$$\begin{cases} -\Delta y = 1_{\omega} u & \text{in } \Omega, \\ y = 0 & \text{on } \Gamma, \end{cases}$$
(1)

y = y(x): electric potential; the density of charge is $1_{\omega} u$; $E = -\nabla y$ is the associated electric field Question: How to choose u to have y as good as possible? For instance, for given $a, b > 0, y_d \in L^2(\Omega)$ and $U_{ad} \subset L^2(\omega)$:

$$\begin{array}{l} \text{Minimize} \quad J(u) = \frac{a}{2} \int_{\Omega} |y - y_d|^2 \, dx + \frac{b}{2} \int_{\omega} |u|^2 \, dx \\ \text{Subject to} \quad u \in \mathcal{U}_{\text{ad}}, \ (1) \end{array}$$

$$(2)$$

where a, b > 0.

Theorem 1: existence, uniqueness

Assume: $\mathcal{U}_{ad} \subset L^2(\omega)$ is non-empty, closed, convex. Then: \exists ! optimal \hat{u}

Theorem 2: characterization (optimality)

Same hypotheses. Then: $\exists \hat{y}, \hat{p}$ with

$$\begin{cases} -\Delta \hat{y} = \hat{u} \mathbf{1}_{\omega} & \text{in} \quad \Omega\\ \hat{y} = \mathbf{0} & \text{on} \quad \Gamma \end{cases}$$
(3)

$$\begin{cases} -\Delta \hat{p} = \hat{y} - y_d & \text{in} \quad \Omega\\ \hat{p} = 0 & \text{on} \quad \Gamma \end{cases}$$
(4)

$$\int_{\omega} (a\hat{p} + b\hat{u})(u - \hat{u}) \, dx \ge 0 \quad \forall u \in \mathcal{U}_{ad}$$
(5)

PROOF OF THEOREM 1:

Recall:
$$J(u) = \frac{a}{2} \int_{\Omega} |y - y_d|^2 dx + \frac{b}{2} \int_{\omega} |u|^2 dx \ \forall u \in \mathcal{U}_{ad}$$

 $u \mapsto J(u)$ is strictly convex, coercive and continuous (hence weakly lsc) in $L^2(\omega)$ \mathcal{U}_{ad} is closed and convex Hence ...

QUESTIONS: a = 0? b = 0? Interpretations?

PROOF OF THEOREM 2:

Try to write that $\langle J'(\hat{u}), u - \hat{u} \rangle \geq 0$ $u \in \mathcal{U}_{\mathrm{ad}}$, with $\hat{u} \in \mathcal{U}_{\mathrm{ad}}$

If \hat{p} solves (4), then $\langle J'(\hat{u}), u - \hat{u} \rangle = \int_{\omega} (a\hat{p} + b\hat{u}) (u - \hat{u}) dx$ Consequently, ...

Remark

In this case, the reciprocal holds: if (3) - (5) holds, then \hat{u} is the optimal control

Remark

From the previous argument: $\langle J'(u), v \rangle = \int_{\omega} (ap + bu) v \, dx$, with $-\Delta p = y - y_d$ in Ω , p = 0 on Γ (the adjoint state) Useful!

QUESTIONS: First suggested iterative method: $-\Delta y^n = u^{n-1} 1_{\omega} \text{ in } \Omega, y^n = 0 \text{ on } \Gamma$ $-\Delta p^n = y^n - y_d \text{ in } \Omega, p^n = 0 \text{ on } \Gamma$ $\int_{\omega} (ap^n + bu^n)(u - u^n) dx \ge 0 \forall u \in U_{ad}, u^n \in U_{ad}$ Convergence? Other iterates based on gradient computation?

Many possible generalizations ...

QUESTIONS: Similar optimal control problems for other PDEs?

 $y_t - \Delta y = u\mathbf{1}_{\omega} \text{ in } \Omega \times (0, T) + \dots$ or $y_{tt} - \Delta y = u\mathbf{1}_{\omega}, iy_t + \Delta y = u\mathbf{1}_{\omega} \dots$ similar nonlinear PDEs, etc. Existence/uniqueness? Characterization? Convergent algorithms? Assume: in Ω we find two different dielectric materials, with permeability coefficients α and β (0 < α < β). How can we determine an optimal distribution?

The electrostatic potential y = y(x) for a partition $\{G_1, G_2\}$ of Ω : $-\nabla \cdot (a(x)\nabla y) = f(x)$ in Ω , y = 0 on Γ where $a(x) = \alpha$ in G_1 , $a(x) = \beta$ in G_2 (*f* is given; *a* is the control and *y* is the state)

Question: How to choose *a* to have *y* as good as possible? For instance, for given $y_d \in L^2(\Omega)$:

Minimize
$$j(a) = \frac{1}{2} \int_{\Omega} |y - y_d|^2 dx$$

Subject to $a \in \mathcal{A}_{ad} = \{ a \in L^{\infty}(\Omega) : a(x) \in \{\alpha, \beta\} a.e. \}$ (6)

Even beter:

Minimize
$$j(a) = \frac{1}{2} \int_{\Omega} |y - y_d|^2 dx$$

Subject to $a \in \mathcal{A}_{ad}, \int_{\Omega} a \, dx \leq l$ (7)

We assume N = 2 (for simplicity) **IN GENERAL**, $\not\equiv$ **SOLUTION**: Minimizing $\{a^n\}, a^n \rightarrow a^0$ weakly-*, $y^n \rightarrow y$ weakly, but ... (typical for control on the coefficients)

Notation: $\mathcal{A}(\alpha, \beta)$ is the family of 2×2 matrices A such that $A(x)\xi \cdot \xi \ge \alpha |\xi|^2$, $(A(x))^{-1}\xi \cdot \xi \ge \frac{1}{\beta} |\xi|^2 \quad \forall \xi \in \mathbb{R}^2$, x a.e. in Ω

If $A^n, A^0 \in \mathcal{A}(\alpha, \beta)$, A^n *H*-converges to A^0 if $\forall \mathcal{O} \subset \Omega, \forall g$ the corresponding solutions satisfy $y^n \to y^0$ weakly in H_0^1 and $A^n \nabla y^n \to A^0 \nabla y^0$ weakly in L^2 [Murat and Tartar, 1978...]

Theorem 3: compactness

The family $\mathcal{A}(\alpha, \beta)$ is compact for the *H*-convergence

The key point: we can have $A^n = a^n I \forall n$ and non-diagonal A^0 Explicit examples; thus, no solution for (6)

What can be done? Relaxation: (Q) is the relaxed problem of (P) if

- (a) ∃ solutions to (Q)
- (b) Solutions to (Q) \equiv weak limits of minimizing sequences of (P)

Notation: $\tilde{\mathcal{A}}_{ad}$ is the family of all symmetric $A \in \mathcal{A}(\alpha, \beta)$ with $\alpha \leq \lambda_1(x) \leq \lambda_2(x) \leq \beta$, $\frac{\alpha\beta}{\alpha + \beta - \lambda_2(x)} \leq \lambda_1(x)$ a.e. in Ω

A new problem:

$$\begin{array}{l} \text{Minimize } j(A) := \frac{1}{2} \int_{\Omega} |Y - y_d|^2 \, dx \\ \text{Subject to } A \in \tilde{\mathcal{A}}_{\text{ad}}, \quad -\nabla \cdot (A(x) \nabla Y) = f(x) \ \text{in } \Omega, \ \dots \end{array}$$

$$\tag{8}$$

Theorem 4: relaxation

 $A \in \tilde{\mathcal{A}}_{ad} \Leftrightarrow A$ is the *H*-limit of some $a^n I$, with $a^n \in \mathcal{A}_{ad}$ Hence, the relaxed problem of (6) is (8)

Physical interpretation: a composite anisotropic material

QUESTIONS: Optimality systems for (6) and (8)? Convergent iterates? Numerics?

QUESTIONS: The *H*-closure of A_{ad} for *N*-dimensional problems ($N \ge 3$)? Similar results for parabolic and hyperbolic PDEs? Nonlinearities?

In view of the difficulty: periodic structures Many results under these conditions for many related problems Assume: Ω is filled with a Navier-Stokes fluid We try to find the optimal shape of a body travelling in Ω :

$$\begin{array}{ll} \text{Minimize} \quad T(B, y) := 2\nu \int_{\Omega \setminus B} |Dy|^2 \, dx \\ \text{Subject to} \quad B \in \mathcal{B}_{\text{ad}}, \quad (y, \pi) \text{ solves NS in } \Omega \setminus B \end{array}$$
(9)

$$\begin{cases} -\nu\Delta y + (y \cdot \nabla)y + \nabla\pi = 0, \quad \nabla \cdot y = 0 & \text{in} \quad \Omega \setminus B \\ y = y_{\infty} & \text{on} \quad \Gamma \\ y = 0 & \text{on} \quad \partial B \end{cases}$$
(10)

 \mathcal{B}_{ad} is the family of admissible bodies

For instance: $\hat{B} \in \mathcal{B}_{ad} \Leftrightarrow B = \overline{\mathcal{O}}$ for some connected open \mathcal{O} with $D_0 \subset \mathcal{O} \subset D_1$, $\partial \mathcal{O} \in W^{1,\infty}$

We are minimizing the drag, subject to $B \in \mathcal{B}_{ad}$, since

$$T(B,y) = -C_0 \int_{\Gamma} y_{\infty} \cdot (\sigma(y,\pi) \cdot n) \ d\Gamma$$

In general: NO WAY TO PROVE \exists , unless ARTIFICIAL CONDITIONS ARE IMPOSED TO \mathcal{B}_{ad} (typical for optimal design)

Explanation: a minimizing sequence $\{B^n, y^n\}$. Then:

- $||y^n||_{H^1}$ is uniformly bounded, whence $y^n \to y$ weakly in H^1
- $B^n \to B^0$ in the Haussdorf distance sense

But: there is no reason to have $y = y^0$!

This would be the case if all $B \in \mathcal{B}_{ad}$ are uniformly $W^{1,\infty}$. But ...

QUESTIONS: Minimal uniform regularity hypotheses for existence? A "natural" condition on \mathcal{B}_{ad} ensuring that $y = y^0$? Assume \exists . We look for a "body variations" formula:

 $D(\hat{B} + u) = D(\hat{B}) + D'(\hat{B}; u) + o(u), \quad \hat{B} + u = \{x = (I + u)(\xi) : \xi \in \hat{B}\}$ (differentiating $u \mapsto D(\hat{B} + u); \quad \hat{B}$ is a reference body shape)

Theorem 5: optimality

Assume: $\partial \hat{B}, \Gamma \in W^{2,\infty}$ and $u \in W^{2,\infty}$. Then:

$$D'(\hat{B}; u) = \int_{\partial \hat{B}} \left(\frac{\partial w}{\partial n} - \frac{\partial y}{\partial n} \right) \cdot \frac{\partial y}{\partial n} (u \cdot n) \, d\sigma,$$

where (w, q) is the associated adjoint state:

$$\begin{cases} -\nu \Delta w_i + \sum_j \partial_i y_j \, w_j - \sum_j y_j \, \partial_j w_i + \partial_i q = -2\nu \, \Delta y_i \\ \nabla \cdot w = 0, \quad \text{etc.} \end{cases}$$

Again very useful!

QUESTIONS: A sequence $\{B^n\}$ "converging" to a solution? Second-order derivatives and applications? $\Omega \subset \mathbb{R}^N$: organ (the brain), N = 2 or N = 3T > 0: final time c, β : cancer cells and inhibitors populations (fonctions of (x, t); the state) v: a therapy, acting on $\omega \subset \Omega$ (the control) Glioblastoma + radiotherapy [Swanson et al., 1990...] The state system:

$$\begin{array}{ll} f(c_t - \nabla \cdot (\mathcal{D}(x)\nabla c) = f(c) - F(c,\beta) & \text{in } \Omega \times (0,T) \\ \beta_t - \mu \Delta \beta = -h(\beta) - H(c,\beta) + \mathbf{v} \mathbf{1}_{\omega} & \text{in } \Omega \times (0,T) \\ c(0) = c^0, \ \beta(0) = 0 & \text{in } \Omega, \ \text{etc.} \end{array}$$

f and *h* give the proliferation and dissipation laws of *c* and β *F* and *H* determine how *c* and β interact

Simplest choice: $f(c) = \rho c$, $h(\beta) = m\beta$, $F(c, \beta) = Rc\beta$, $H(c, \beta) = Mc\beta$ Assumed in the sequel Constraints on v (to be realistic):

$$\mathbf{v} \in \mathcal{V}_{ad} = \{ \mathbf{v} : 0 \le \mathbf{v} \le \mathbf{A}, \int_0^T \mathbf{v} \, dt \le \mathbf{B}, \ \mathbf{v} = 0 \text{ for } t \notin \mathcal{I} \}$$

(\mathcal{I} is the set of times for therapy application)

Question: how to choose v to have c as good as possible?

$$\begin{array}{l} \text{Minimize } \mathcal{K}(\boldsymbol{v},\boldsymbol{c},\beta) = \frac{a}{2} \int_{\Omega} |\boldsymbol{c}(\boldsymbol{x},T)|^2 + \frac{b}{2} \int_{\omega \times (0,T)} |\boldsymbol{v}|^2 \\ \text{Subject to } \boldsymbol{v} \in \mathcal{V}_{\text{ad}}, \ (\boldsymbol{c},\beta) \text{ satisfies (12)} \end{array}$$
(11)

$$\begin{cases} c_t - \nabla \cdot (D(x)\nabla c) = \rho c - Rc\beta & \text{in } \Omega \times (0, T) \\ \beta_t - \mu \Delta \beta = -m\beta - Mc\beta + v1_\omega & \text{in } \Omega \times (0, T) \\ c(0) = c^0, \ \beta(0) = 0 & \text{in } \Omega, \ \text{etc.} \end{cases}$$
(12)

Theorem 6: existence

Assume: $\mathcal{V}_{ad} \subset L^2(\omega \times (0, T))$ is as before Then: \exists optimal control-state $(\hat{u}, \hat{c}, \hat{\beta})$

Theorem 7: characterization (optimality)

Same hypotheses, $(\hat{u}, \hat{c}, \hat{\beta})$ is optimal Then: $\exists (\hat{p}, \hat{\eta})$ such that one has (12),

$$\begin{cases} -\hat{p}_t - \nabla \cdot (D(x)\nabla\hat{p}) = \rho\hat{p} - R\hat{\beta}\hat{p} - M\hat{\beta}\hat{\eta} \\ -\hat{\eta}_t - \mu\Delta\hat{\eta} = -m\hat{\eta} - R\hat{c}\hat{p} - M\hat{c}\hat{\eta} \\ \hat{p}(T) = \hat{c}(T), \ \hat{\eta}(T) = 0 \text{ etc.} \end{cases}$$
(13)

$$\iint_{\omega \times (0,T)} (a\hat{p} + b\hat{u})(u - \hat{u}) \, dx \, dt \ge 0 \quad \forall u \in \mathcal{V}_{ad}, \ \hat{u} \in \mathcal{V}_{ad}$$
(14)

The arguments are similar to those above

QUESTIONS: Detailed argument for existence? For optimality?

Optimal control of a tumor growth model

Also:
$$\langle J'(u), v \rangle = \iint_{\omega \times (0,T)} (ap + bu) v$$
, where

$$\begin{cases}
-p_t - \nabla \cdot (D(x)\nabla p) = \rho p - R\beta p - M\beta \eta & \text{in } \Omega \times (0,T) \\
-\eta_t - \mu \Delta \eta = -m\eta - Rcp - Mc\eta & \text{in } \Omega \times (0,T) \\
p(T) = c(T), \quad \eta(T) = 0 & \text{in } \Omega, \text{ etc.} \end{cases}$$

(the adjoint state associate to *u*) Once more: useful

QUESTIONS: Uniqueness of optimal state-control? The reciprocal of the optimality result?

QUESTIONS: Iterative methods for the computation of \hat{u} ? Convergence? [Echevarria et al., 2007] THANK YOU VERY MUCH