Seminario del Departamento de Ecuaciones Diferenciales y Análisis Numérico
Fecha : 27 de abril de 2017
Hora : 10:00
Lugar : Seminario del Departamento (Fac. de Matemáticas, 3a. planta, módulo 34)
Giovany M. Figueiredo
(Universidad de Brasilia, Brasil)
Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials
Resumen
In this work it is studied a quasilinear elliptic problem in the whole space $mathbb{R}^N$ involving the 1-Laplacian operator, with potentials which can vanish at infinity. The Euler-Lagrange functional is defined in a space whose definition resembles $BV(mathbb{R}^N)$ and, in order to avoid working with extensions of it to some Lebesgue space, we state and prove a version of the Mountain Pass Theorem without the Palais-Smale condition to Lipschitz continuous functionals.